cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A246467 G.f.: 1 / AGM(1-5*x, sqrt((1-x)*(1-25*x))).

Original entry on oeis.org

1, 9, 121, 2025, 38025, 762129, 15912121, 341621289, 7484845225, 166549691025, 3751508008161, 85341068948529, 1957289174870121, 45199191579030225, 1049893021288265625, 24510327614556266025, 574726636455361317225, 13528549573868347823025, 319541915502909478890625
Offset: 0

Views

Author

Paul D. Hanna, Sep 06 2014

Keywords

Comments

In general, the g.f. of the squares of coefficients in g.f. 1/sqrt((1-p*x)*(1-q*x)) is given by
1/AGM(1-p*q*x, sqrt((1-p^2*x)*(1-q^2*x))) = Sum_{n>=0} x^n*[Sum_{k=0..n} p^(n-k)*((q-p)/4)^k*C(n,k)*C(2*k,k)]^2,
and consists of integer coefficients when 4|(q-p).
Here AGM(x,y) = AGM((x+y)/2,sqrt(x*y)) is the arithmetic-geometric mean.

Examples

			G.f.: A(x) = 1 + 9*x + 121*x^2 + 2025*x^3 + 38025*x^4 + 762129*x^5 +...
where the square-root of the terms yields A026375:
[1, 3, 11, 45, 195, 873, 3989, 18483, 86515, 408105, ...]
the g.f. of which is 1/sqrt((1-x)*(1-5*x)).
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/ArithmeticGeometricMean[1-5x,Sqrt[(1-x)(1-25x)]],{x,0,20}],x] (* Harvey P. Dale, Nov 01 2023 *)
  • PARI
    {a(n)=polcoeff( 1 / agm(1-5*x, sqrt((1-x)*(1-25*x) +x*O(x^n))), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)*binomial(2*k,k))^2}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) = A026375(n)^2 = [Sum_{k=0..n} binomial(n,k)*binomial(2*k,k)]^2.
G.f.: 1 / AGM((1-x)*(1+5*x), (1+x)*(1-5*x)) = Sum_{n>=0} a(n)*x^(2*n).
a(n) ~ 5^(2*n+1) / (4*Pi*n). - Vaclav Kotesovec, Dec 10 2018

A307810 Expansion of 1/AGM(1-64*x, sqrt((1-16*x)*(1-256*x))).

Original entry on oeis.org

1, 100, 13924, 2371600, 453093796, 92598490000, 19745403216400, 4333667896360000, 971177275449892900, 221106619001508490000, 50967394891692703241104, 11866732390447357481358400, 2785834789480617203561744656, 658549235163074008904405646400
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2019

Keywords

Comments

See A246923.
Also the squares of coefficients in g.f. 1/sqrt((1-4*x)*(1-16*x)).

Crossrefs

Cf. A307695.
(Sum_{k=0..n} c^(n-k)*e^k*binomial(n,k)*binomial(2k,k))^2 = (Sum_{k=0..n} d^(n-k)*(-e)^k*binomial(n,k)*binomial(2k,k))^2, where e = (d-c)/4: A002894 (c=0,d=4,e=1), A246467 (c=1,d=5,e=1), A246876 (c=2,d=6,e=1), A246906 (c=3,d=7,e=1), A307811 (c=5,d=9,e=1), A322240 (c=-3,d=5,e=2), A322243 (c=-1,d=7,e=2), A246923 (c=1,d=9,e=2), A248167 (c=3, d=11,e=2), A322247 (c=-1,d=11,e=3), this sequence (c=4,d=16,e=3), A322245 (c=-5,d=11,e=4), A322249 (c=-3,d=13,e=4).

Programs

  • Mathematica
    a[n_] := Sum[4^(n-k) * 3^k * Binomial[n, k] * Binomial[2*k, k], {k, 0, n}]^2; Array[a, 14, 0] // Flatten (* Amiram Eldar, May 13 2021 *)
  • PARI
    N=20; x='x+O('x^N); Vec(1/agm(1-64*x, sqrt((1-16*x)*(1-256*x))))
    
  • PARI
    {a(n) = sum(k=0, n, 4^(n-k)*3^k*binomial(n, k)*binomial(2*k, k))^2}
    
  • PARI
    {a(n) = sum(k=0, n, 16^(n-k)*(-3)^k*binomial(n, k)*binomial(2*k, k))^2}

Formula

a(n) = A307695(n)^2 = (Sum_{k=0..n} 4^(n-k)*3^k*binomial(n,k)*binomial(2k,k))^2 = (Sum_{k=0..n} 16^(n-k)*(-3)^k*binomial(n,k)*binomial(2k,k))^2.
a(n) ~ 2^(8*n+2) / (3*Pi*n). - Vaclav Kotesovec, Sep 27 2019

A307811 Expansion of 1/AGM(1-45*x, sqrt((1-25*x)*(1-81*x))).

Original entry on oeis.org

1, 49, 2601, 148225, 8970025, 570111129, 37678303881, 2567836387809, 179267329355625, 12754414737348025, 921185098227422161, 67340346156989933769, 4971327735657992896201, 369994703739586257235225, 27725052308247030792515625, 2089567204521186409129541025
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2019

Keywords

Comments

See A246923.
Also the squares of coefficients in g.f. 1/sqrt((1-5*x)*(1-9*x)).

Crossrefs

Cf. A104454.
(Sum_{k=0..n} c^(n-k)*e^k*binomial(n,k)*binomial(2k,k))^2 = (Sum_{k=0..n} d^(n-k)*(-e)^k*binomial(n,k)*binomial(2k,k))^2, where e = (d-c)/4: A002894 (c=0,d=4,e=1), A246467 (c=1,d=5,e=1), A246876 (c=2,d=6,e=1), A246906 (c=3,d=7,e=1), this sequence (c=5,d=9,e=1), A322240 (c=-3,d=5,e=2), A322243 (c=-1,d=7,e=2), A246923 (c=1,d=9,e=2), A248167 (c=3, d=11,e=2), A322247 (c=-1,d=11,e=3), A307810 (c=4,d=16,e=3), A322245 (c=-5,d=11,e=4), A322249 (c=-3,d=13,e=4).

Programs

  • Mathematica
    a[n_] := Sum[5^(n-k) * Binomial[n, k] * Binomial[2*k, k], {k, 0, n}]^2; Array[a, 16, 0] // Flatten (* Amiram Eldar, May 13 2021 *)
  • PARI
    N=20; x='x+O('x^N); Vec(1/agm(1-45*x, sqrt((1-25*x)*(1-81*x))))
    
  • PARI
    {a(n) = sum(k=0, n, 5^(n-k)*binomial(n, k)*binomial(2*k, k))^2}
    
  • PARI
    {a(n) = sum(k=0, n, 9^(n-k)*(-1)^k*binomial(n, k)*binomial(2*k, k))^2}

Formula

a(n) = A104454(n)^2 = (Sum_{k=0..n} 5^(n-k)*binomial(n,k)*binomial(2k,k))^2 = (Sum_{k=0..n} 9^(n-k)*(-1)^k*binomial(n,k)*binomial(2k,k))^2.
a(n) ~ 3^(4*n+2) / (4*Pi*n). - Vaclav Kotesovec, Sep 27 2019
Showing 1-3 of 3 results.