cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246883 Expansion of Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k)^2 * x^(3*k).

Original entry on oeis.org

1, 1, 1, 1, 2, 5, 10, 17, 27, 46, 86, 165, 308, 558, 1006, 1841, 3421, 6383, 11863, 21966, 40697, 75662, 141099, 263429, 491778, 918104, 1715259, 3208078, 6005818, 11250198, 21082487, 39524241, 74135187, 139128897, 261228200, 490682127, 922015964, 1733127107, 3258939997, 6130162494, 11534742080
Offset: 0

Views

Author

Paul D. Hanna, Sep 06 2014

Keywords

Comments

Limit a(n)/a(n+1) = t^2 = 0.524888598656404... (A072223) where t is the positive real root of 1 - x - x^4 = 0.
Diagonal of the rational function 1 / ((1-x)*(1-y) - (x*y)^4). - Seiichi Manyama, Apr 29 2025

Examples

			G.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 5*x^5 + 10*x^6 + 17*x^7 +...
where, by definition,
A(x) = 1 + x*(1 + x^3) + x^2*(1 + 2^2*x^3 + x^6)
+ x^3*(1 + 3^2*x^3 + 3^2*x^6 + x^9)
+ x^4*(1 + 4^2*x^3 + 6^2*x^6 + 4^2*x^9 + x^12)
+ x^5*(1 + 5^2*x^3 + 10^2*x^6 + 10^2*x^9 + 5^2*x^12 + x^15) +...
which is also given by the series identity:
A(x) = 1/(1-x+x^4) + 2*x^4/(1-x+x^4)^3 + 6*x^8/(1-x+x^4)^5 + 20*x^12/(1-x+x^4)^7 + 70*x^16/(1-x+x^4)^9 + 252*x^20/(1-x+x^4)^11 + 924*x^24/(1-x+x^4)^13 +...
The logarithm of the g.f. begins:
log(A(x)) = x*(1 + x^3) + x^2*(1 + 6*x^3 + x^6)/2
+ x^3*(1 + 15*x^3 + 15*x^6 + x^9)/3
+ x^4*(1 + 28*x^3 + 70*x^6 + 28*x^9 + x^12)/4
+ x^5*(1 + 45*x^3 + 210*x^6 + 210*x^9 + 45*x^12 + x^15)/5 +...
more explicitly,
log(A(x)) = x + x^2/2 + x^3/3 + 5*x^4/4 + 16*x^5/5 + 31*x^6/6 + 50*x^7/7 + 77*x^8/8 + 145*x^9/9 + 306*x^10/10 + 628*x^11/11 + 1199*x^12/12 +...
where the logarithmic derivative equals
A'(x)/A(x) = (1-x+4*x^3+5*x^4-4*x^7)/((1-x+2*x^2+x^4)*(1-x-2*x^2+x^4)).
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/Sqrt[(1 - x + x^4)^2 - 4 x^4], {x, 0, 40}], x] (* Michael De Vlieger, Sep 10 2021 *)
  • PARI
    /* By definition: */
    {a(n)=local(A=1); A=sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^2*x^(3*k)) +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    /* From closed formula: */
    {a(n)=local(A=1); A= 1/sqrt((1 - x + x^4)^2 - 4*x^4 +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    /* From a series identity: */
    {a(n)=local(A=1+x); A=sum(m=0, n, (2*m)!/(m!)^2 * x^(4*m) / (1 - x + x^4 +x*O(x^n))^(2*m+1)); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    /* From a binomial series identity: */
    {a(n)=local(A=1+x); A=sum(m=0, n, x^m*(1-x^3)^(2*m+1)*sum(k=0, n, binomial(m+k, k)^2*x^(3*k)) +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    /* From a binomial series identity: */
    {a(n)=local(A=1+x); A=sum(m=0, n\4, x^(4*m)*sum(k=0, n-4*m, binomial(m+k, k)^2*x^k) +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    /* From a binomial series identity: */
    {a(n)=local(A=1+x); A=sum(m=0, n\4, x^(4*m) * sum(k=0, m, binomial(m, k)^2*x^k) / (1-x +x*O(x^n))^(2*m+1) ); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    /* From exponential formula: */
    {a(n)=local(A=1); A=exp(sum(m=1, n, sum(k=0, m, binomial(2*m, 2*k)*x^(3*k)) * x^m/m) +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    /* From formula for a(n): */
    {a(n)=sum(k=0, n\3, binomial(n-3*k, k)^2)}
    for(n=0, 40, print1(a(n), ", "))

Formula

G.f.: Sum_{n>=0} (2*n)!/(n!)^2 * x^(4*n) / (1 - x + x^4)^(2*n+1). - Paul D. Hanna, Oct 15 2014
G.f.: Sum_{n>=0} x^n * [Sum_{k>=0} C(n+k,k)^2 * x^(3*k)] * (1-x^3)^(2*n+1).
G.f.: Sum_{n>=0} x^(4*n) * [Sum_{k>=0} C(n+k,k)^2 * x^k].
G.f.: Sum_{n>=0} x^(4*n) * [Sum_{k=0..n} C(n,k)^2 * x^k] /(1-x)^(2n+1).
G.f.: exp( Sum_{n>=1} (x^n/n) * Sum_{k=0..n} C(2*n,2*k) * x^(3*k) ).
G.f.: 1 / sqrt((1 - x + 2*x^2 + x^4)*(1 - x - 2*x^2 + x^4)).
G.f.: 1 / sqrt((1 - x + x^4)^2 - 4*x^4).
G.f.: 1 / sqrt((1 - x - x^4)^2 - 4*x^5).
a(n) = Sum_{k=0..[n/3]} C(n-3*k, k)^2.
n*a(n) = (2*n-1)*a(n-1) - (n-1)*a(n-2) + 2*(n-2)*a(n-4) + (2*n-5)*a(n-5) - (n-4)*a(n-8). - Seiichi Manyama, Aug 10 2024