cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246936 Number of partitions of n into 4 sorts of parts.

Original entry on oeis.org

1, 4, 20, 84, 356, 1444, 5876, 23604, 94852, 379908, 1521492, 6088148, 24360548, 97451492, 389838708, 1559394356, 6237711300, 24951007620, 99804576340, 399218968084, 1596878076132, 6387515000292, 25550068873908, 102200286367156, 408801181153476
Offset: 0

Views

Author

Alois P. Heinz, Sep 08 2014

Keywords

Crossrefs

Column k=4 of A246935.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1) +`if`(i>n, 0, 4*b(n-i, i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..25);
  • Mathematica
    (O[x]^20 - 3/QPochhammer[4, x])[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1]+If[i>n, 0, 4 b[n-i, i]]]];
    a[n_] := b[n, n];
    a /@ Range[0, 25] (* Jean-François Alcover, Dec 05 2020, after Alois P. Heinz *)

Formula

G.f.: Product_{i>=1} 1/(1-4*x^i).
a(n) ~ c * 4^n, where c = Product_{k>=1} 1/(1-1/4^k) = A065446 * A132020 = 1.4523536424495970158347... . - Vaclav Kotesovec, Mar 19 2015
G.f.: Sum_{i>=0} 4^i*x^i/Product_{j=1..i} (1 - x^j). - Ilya Gutkovskiy, Apr 12 2018