cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A246935 Number A(n,k) of partitions of n into k sorts of parts; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 3, 0, 1, 4, 12, 14, 5, 0, 1, 5, 20, 39, 34, 7, 0, 1, 6, 30, 84, 129, 74, 11, 0, 1, 7, 42, 155, 356, 399, 166, 15, 0, 1, 8, 56, 258, 805, 1444, 1245, 350, 22, 0, 1, 9, 72, 399, 1590, 4055, 5876, 3783, 746, 30, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 08 2014

Keywords

Comments

In general, column k > 1 is asymptotic to c * k^n, where c = Product_{j>=1} 1/(1-1/k^j) = 1/QPochhammer[1/k,1/k]. - Vaclav Kotesovec, Mar 19 2015
When k is a prime power greater than 1, A(n,k) is the number of conjugacy classes of n X n matrices over a field of size k. - Geoffrey Critzer, Nov 11 2022

Examples

			A(2,2) = 6: [2a], [2b], [1a,1a], [1a,1b], [1b,1a], [1b,1b].
Square array A(n,k) begins:
  1,  1,   1,    1,     1,      1,      1,      1, ...
  0,  1,   2,    3,     4,      5,      6,      7, ...
  0,  2,   6,   12,    20,     30,     42,     56, ...
  0,  3,  14,   39,    84,    155,    258,    399, ...
  0,  5,  34,  129,   356,    805,   1590,   2849, ...
  0,  7,  74,  399,  1444,   4055,   9582,  19999, ...
  0, 11, 166, 1245,  5876,  20455,  57786, 140441, ...
  0, 15, 350, 3783, 23604, 102455, 347010, 983535, ...
		

Crossrefs

Rows n=0-4 give: A000012, A001477, A002378, A027444, A186636.
Main diagonal gives A124577.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
        end:
    A:= (n, k)-> b(n$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1, 0, b[n, i-1, k] + If[i>n, 0, k*b[n-i, i, k]]]]; A[n_, k_] := b[n, n, k];  Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Feb 03 2015, after Alois P. Heinz *)

Formula

G.f. of column k: Product_{i>=1} 1/(1-k*x^i).
T(n,k) = Sum_{i=0..k} C(k,i) * A255970(n,i).

A338673 Expansion of Product_{k>=1} 1 / (1 - 4^(k-1)*x^k).

Original entry on oeis.org

1, 1, 5, 21, 101, 421, 2021, 8421, 39397, 167397, 766437, 3244517, 14881253, 62804453, 283415013, 1210159589, 5401907685, 22966866405, 102497423845, 435085808101, 1925197238757, 8215432696293, 36068400468453, 153579729097189, 674546796630501, 2866238341681637, 12508012102193637
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 23 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 26; CoefficientList[Series[Product[1/(1 - 4^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    Table[Sum[Length[IntegerPartitions[n, {k}]] 4^(n - k), {k, 0, n}], {n, 0, 26}]
    a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[d 4^(k - k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 26}]

Formula

a(n) = Sum_{k=0..n} p(n,k) * 4^(n-k), where p(n,k) = number of partitions of n into k parts.
a(n) ~ sqrt(3) * polylog(2, 1/4)^(1/4) * 4^(n - 1/2) * exp(2*sqrt(polylog(2, 1/4)*n)) / (2*sqrt(Pi)*n^(3/4)). - Vaclav Kotesovec, May 09 2021

A303391 Expansion of Product_{k>=1} (1 + 4*x^k)/(1 - 4*x^k).

Original entry on oeis.org

1, 8, 40, 200, 872, 3720, 15400, 62920, 254440, 1024648, 4112680, 16483400, 66000360, 264150920, 1056903080, 4228272200, 16914393832, 67660396040, 270647139240, 1082600410440, 4330424811880, 17321748357640, 69287088965800, 277148557003720, 1108594618342760
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 23 2018

Keywords

Crossrefs

Programs

  • Maple
    N:= 50: # for a(0)..a(N)
    G:= mul((1+4*x^k)/(1-4*x^k),k=1..N):
    S:= series(G,x,N+1):
    seq(coeff(S,x,j),j=0..N); # Robert Israel, Feb 13 2019
  • Mathematica
    nmax = 25; CoefficientList[Series[Product[(1+4*x^k)/(1-4*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 4^n, where c = QPochhammer[-1, 1/4] / QPochhammer[1/4] = 3.9385207073365388638943873939345313401323799...

A265975 Expansion of Product_{k>=1} 1/(1 - 4*k*x^k).

Original entry on oeis.org

1, 4, 24, 108, 512, 2164, 9464, 39004, 163008, 663588, 2713752, 10954764, 44328512, 178160724, 716821752, 2874497660, 11532111232, 46187508676, 185028540696, 740595436652, 2964628293504, 11862432443764, 47467812675320, 189902835709212, 759756868215872
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 19 2015

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1,
          4^n, b(n, i-1) +i*4*b(n-i, min(n-i, i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..32);  # Alois P. Heinz, Aug 23 2019
  • Mathematica
    nmax=40; CoefficientList[Series[Product[1/(1-4*k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 4^n, where c = Product_{m>=2} 1/(1 - m/4^(m-1)) = 2.700170514502619666262858845683166558216386190684736249639219328278569...

A303392 Expansion of Product_{k>=1} ((1 + 4*x^k) / (1 - 4*x^k))^(1/2).

Original entry on oeis.org

1, 4, 12, 52, 156, 612, 2028, 7892, 27324, 107396, 384844, 1520436, 5566876, 22069796, 81990252, 325707348, 1222582268, 4862950020, 18395472460, 73233825524, 278700724764, 1110232691108, 4245596648876, 16920914168148, 64963831455996, 259012955299396
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 23 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[((1+4*x^k)/(1-4*x^k))^(1/2), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 30; CoefficientList[Series[(-3*QPochhammer[-4, x] / (5*QPochhammer[4, x]))^(1/2), {x, 0, nmax}], x]

Formula

a(n) ~ sqrt(c) * 4^n / sqrt(Pi*n), where c = QPochhammer[-1, 1/4]/QPochhammer[1/4] = 3.9385207073365388638943873939345313401323799...
Showing 1-5 of 5 results.