cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A303360 Expansion of Product_{n>=1} ((1 + 4*x^n)/(1 - 4*x^n))^(1/4).

Original entry on oeis.org

1, 2, 4, 18, 34, 166, 384, 1902, 4756, 24022, 64284, 321542, 899658, 4455690, 12888944, 63185250, 187513426, 910880550, 2759413788, 13295839638, 40967821494, 195979968882, 612569599440, 2911592648458, 9213101043936, 43538337410474, 139246245625364
Offset: 0

Views

Author

Seiichi Manyama, Apr 22 2018

Keywords

Crossrefs

Expansion of Product_{n>=1} ((1 + 2^b*x^n)/(1 - 2^b*x^n))^(1/(2^b)): A015128 (b=0), A303346 (b=1), this sequence (b=2).

Programs

  • Maple
    seq(coeff(series(mul(((1+4*x^k)/(1-4*x^k))^(1/4), k = 1..n), x, n+1), x, n), n = 0..35); # Muniru A Asiru, Apr 22 2018
  • Mathematica
    nmax = 30; CoefficientList[Series[Product[((1 + 4*x^k)/(1 - 4*x^k))^(1/4), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 22 2018 *)
    nmax = 30; CoefficientList[Series[(-3*QPochhammer[-4, x] / (5*QPochhammer[4, x]))^(1/4), {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 23 2018 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, ((1+4*x^k)/(1-4*x^k))^(1/4)))

Formula

a(n) ~ c * 4^n / n^(3/4), where c = (QPochhammer[-1, 1/4] / QPochhammer[1/4])^(1/4) / Gamma(1/4) = 0.3885547372628... - Vaclav Kotesovec, Apr 23 2018

A303390 Expansion of Product_{k>=1} (1 + 3*x^k)/(1 - 3*x^k).

Original entry on oeis.org

1, 6, 24, 96, 330, 1104, 3552, 11184, 34584, 105990, 322224, 975264, 2942016, 8857680, 26631312, 80005632, 240219114, 721036320, 2163789816, 6492625152, 19480105392, 58444390176, 175340344416, 526034008752, 1578124753152, 4734415061142, 14203316252400
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 23 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1+3*x^k)/(1-3*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 3^n, where c = QPochhammer[-1, 1/3] / QPochhammer[1/3] = 5.5877920355220979147599292926505407983327527...

A303402 Expansion of Product_{k>=1} (1 - 4*x^k)/(1 + 4*x^k).

Original entry on oeis.org

1, -8, 24, -72, 344, -1416, 5400, -21576, 87000, -348296, 1390872, -5560776, 22253784, -89025672, 356055960, -1424186568, 5696931032, -22787865096, 91150729368, -364602357960, 1458412314456, -5833651510536, 23334594559128, -93338369011272, 373353522099288
Offset: 0

Views

Author

Seiichi Manyama, Apr 23 2018

Keywords

Crossrefs

Expansion of Product_{k>=1} (1 - b*x^k)/(1 + b*x^k): A002448 (b=1), A303397 (b=2), A303398 (b=3), this sequence (b=4).

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 - 4*x^k)/(1 + 4*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 25 2018 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-4*x^k)/(1+4*x^k)))

Formula

a(n) ~ c * (-4)^n, where c = QPochhammer[-1, -1/4]/QPochhammer[-1/4] = 1.3264181585010678966173808329272239860188791629... - Vaclav Kotesovec, Apr 25 2018

A303392 Expansion of Product_{k>=1} ((1 + 4*x^k) / (1 - 4*x^k))^(1/2).

Original entry on oeis.org

1, 4, 12, 52, 156, 612, 2028, 7892, 27324, 107396, 384844, 1520436, 5566876, 22069796, 81990252, 325707348, 1222582268, 4862950020, 18395472460, 73233825524, 278700724764, 1110232691108, 4245596648876, 16920914168148, 64963831455996, 259012955299396
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 23 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[((1+4*x^k)/(1-4*x^k))^(1/2), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 30; CoefficientList[Series[(-3*QPochhammer[-4, x] / (5*QPochhammer[4, x]))^(1/2), {x, 0, nmax}], x]

Formula

a(n) ~ sqrt(c) * 4^n / sqrt(Pi*n), where c = QPochhammer[-1, 1/4]/QPochhammer[1/4] = 3.9385207073365388638943873939345313401323799...
Showing 1-4 of 4 results.