A300579
Expansion of Product_{k>=1} 1/(1 - 3^(k-1)*x^k).
Original entry on oeis.org
1, 1, 4, 13, 49, 157, 589, 1885, 6826, 22378, 78754, 256630, 904711, 2934247, 10133851, 33287620, 113522089, 370582069, 1262300701, 4110883510, 13869616495, 45364050184, 151708228636, 494743296757, 1654133919475, 5379427446952, 17858926956532, 58219580395822
Offset: 0
-
nmax = 30; CoefficientList[Series[Product[1/(1 - 3^(k-1)*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
A338674
Expansion of Product_{k>=1} 1 / (1 - 5^(k-1)*x^k).
Original entry on oeis.org
1, 1, 6, 31, 181, 931, 5431, 27931, 159806, 834806, 4697306, 24478556, 137931681, 717306681, 3989650431, 20958791056, 115494337931, 604881056681, 3333662306681, 17439531447306, 95396181837931, 501716543166056, 2725636758009806, 14311071572462931, 77793648720900431
Offset: 0
-
nmax = 24; CoefficientList[Series[Product[1/(1 - 5^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Table[Sum[Length[IntegerPartitions[n, {k}]] 5^(n - k), {k, 0, n}], {n, 0, 24}]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[d 5^(k - k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 24}]
A338675
Expansion of Product_{k>=1} 1 / (1 - 6^(k-1)*x^k).
Original entry on oeis.org
1, 1, 7, 43, 295, 1807, 12391, 75895, 512647, 3179815, 21196807, 131258311, 875934727, 5416216711, 35763798535, 223059458311, 1461247179271, 9093600322567, 59586011601415, 370499158291975, 2411884242270727, 15072418547458567, 97530161503173127, 608700350537722375
Offset: 0
-
nmax = 23; CoefficientList[Series[Product[1/(1 - 6^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Table[Sum[Length[IntegerPartitions[n, {k}]] 6^(n - k), {k, 0, n}], {n, 0, 23}]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[d 6^(k - k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 23}]
A338676
Expansion of Product_{k>=1} 1 / (1 - 7^(k-1)*x^k).
Original entry on oeis.org
1, 1, 8, 57, 449, 3193, 25145, 178809, 1391314, 9996498, 76955586, 552257546, 4255024523, 30502987019, 232969386483, 1682476714724, 12762937304013, 92019035596293, 698222541789109, 5030814634614406, 37955614705675479, 274741644961416648, 2061916926761604144, 14909943849253537057
Offset: 0
-
nmax = 23; CoefficientList[Series[Product[1/(1 - 7^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Table[Sum[Length[IntegerPartitions[n, {k}]] 7^(n - k), {k, 0, n}], {n, 0, 23}]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[d 7^(k - k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 23}]
A338677
Expansion of Product_{k>=1} 1 / (1 - 8^(k-1)*x^k).
Original entry on oeis.org
1, 1, 9, 73, 649, 5257, 46729, 378505, 3331721, 27219593, 237491849, 1938544265, 16925054601, 138041874057, 1196384310921, 9820024329865, 84609648809609, 693596417152649, 5977550934234761, 48976660041553545, 419984680697190025, 3455551232025810569, 29494747047731910281
Offset: 0
-
nmax = 22; CoefficientList[Series[Product[1/(1 - 8^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Table[Sum[Length[IntegerPartitions[n, {k}]] 8^(n - k), {k, 0, n}], {n, 0, 22}]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[d 8^(k - k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 22}]
A338678
Expansion of Product_{k>=1} 1 / (1 - 9^(k-1)*x^k).
Original entry on oeis.org
1, 1, 10, 91, 901, 8191, 81091, 737191, 7239142, 66288142, 646149322, 5912729632, 57664985653, 527352541453, 5111015223223, 46998961540624, 453182267869615, 4163124744738505, 40151590267580785, 368699990679135946, 3540322181970716707, 32632895079429817528, 312061810101214595698
Offset: 0
-
nmax = 22; CoefficientList[Series[Product[1/(1 - 9^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Table[Sum[Length[IntegerPartitions[n, {k}]] 9^(n - k), {k, 0, n}], {n, 0, 22}]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[d 9^(k - k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 22}]
A338679
Expansion of Product_{k>=1} 1 / (1 - 10^(k-1)*x^k).
Original entry on oeis.org
1, 1, 11, 111, 1211, 12211, 133211, 1343211, 14553211, 147653211, 1589753211, 16120753211, 173641753211, 1759951753211, 18855161753211, 192028261753211, 2048080361753211, 20841811361753211, 222333332361753211, 2261780642361753211, 24033895852361753211, 245331468952361753211
Offset: 0
-
nmax = 21; CoefficientList[Series[Product[1/(1 - 10^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Table[Sum[Length[IntegerPartitions[n, {k}]] 10^(n - k), {k, 0, n}], {n, 0, 21}]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[d 10^(k - k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 21}]
A344063
Expansion of Product_{k>=1} (1 + 4^(k-1)*x^k).
Original entry on oeis.org
1, 1, 4, 20, 80, 384, 1600, 7424, 30720, 143360, 593920, 2703360, 11403264, 51118080, 214958080, 965738496, 4047503360, 17951621120, 76168560640, 334202142720, 1411970498560, 6211596451840, 26203595472896, 114246130073600, 484815908372480, 2101441598586880, 8896148580335616
Offset: 0
Cf.
A003056,
A008289,
A261568,
A304961,
A338673,
A340103,
A344062,
A344064,
A344065,
A344066,
A344067,
A344068.
-
nmax = 26; CoefficientList[Series[Product[(1 + 4^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Table[Sum[Length[Select[IntegerPartitions[n, {k}], UnsameQ @@ # &]] 4^(n - k), {k, 0, Floor[(Sqrt[8 n + 1] - 1)/2]}], {n, 0, 26}]
-
seq(n)={Vec(prod(k=1, n, 1 + 4^(k-1)*x^k + O(x*x^n)))} \\ Andrew Howroyd, May 08 2021
A338697
a(n) = [x^n] Product_{k>=1} 1 / (1 - n^(k-1)*x^k).
Original entry on oeis.org
1, 1, 3, 13, 101, 931, 12391, 178809, 3331721, 66288142, 1589753211, 40104031166, 1183380156013, 36187564837217, 1262524447510383, 45533370885563716, 1834219414937219601, 76016894083755947753, 3479900167920331954531, 162982921698852088968886, 8341707623665223127224821
Offset: 0
Cf.
A008284,
A075900,
A124577,
A300579,
A338673,
A338674,
A338675,
A338676,
A338677,
A338678,
A338679,
A344095.
-
Table[SeriesCoefficient[Product[1/(1 - n^(k - 1) x^k), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
Join[{1}, Table[Sum[Length[IntegerPartitions[n, {k}]] n^(n - k), {k, 0, n}], {n, 1, 20}]]
Join[{1}, Table[SeriesCoefficient[x + (n-1)/(n*QPochhammer[1/n, n*x]), {x, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, May 09 2021 *)
A370434
Expansion of Product_{n>=1} (1 - 4^(n-1)*x^n) * (1 + 4^(n-1)*x^n)^2.
Original entry on oeis.org
1, 1, 3, 19, 60, 348, 1216, 6480, 23040, 121152, 445696, 2214912, 8475648, 40796160, 158564352, 754302976, 2949120000, 13694926848, 55180001280, 250151436288, 1008079994880, 4570684063744, 18552497111040, 82564035379200, 339344829186048, 1494986847682560, 6161930523770880
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 19*x^3 + 60*x^4 + 348*x^5 + 1216*x^6 + 6480*x^7 + 23040*x^8 + 121152*x^9 + 445696*x^10 + 2214912*x^11 + 8475648*x^12 + ...
where A(x) is the series expansion of the infinite product given by
A(x) = (1 - x)*(1 + x)^2 * (1 - 4*x^2)*(1 + 4*x^2)^2 * (1 - 16*x^3)*(1 + 16*x^3)^2 * (1 - 64*x^4)*(1 + 64*x^4)^2 * ... * (1 - 4^(n-1)*x^n)*(1 + 4^(n-1)*x^n)^2 * ...
-
{a(n) = polcoeff( prod(k=1,n, (1 - 4^(k-1)*x^k) * (1 + 4^(k-1)*x^k)^2 +x*O(x^n)), n)}
for(n=0,40, print1(a(n),", "))
Showing 1-10 of 10 results.
Comments