cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247004 Denominator of (n+4)/gcd(n, 4)^2, a 16-periodic sequence that associates A061037 with A106617.

Original entry on oeis.org

4, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 2
Offset: 0

Views

Author

Keywords

Comments

This sequence may also be defined as the denominators of A061037(n+3)/(n+1), or also as A060819 / A109008.
One can notice that the analog numerators [numerators of (n+4)/gcd(n, 4)^2] are A106617 left-shifted 4 places.

Examples

			Fractions begin:
1/4,  5,  3/2,  7, 1/2,  9,  5/2, 11, 3/4, 13,  7/2, 15, 1, 17,  9/2, 19,
5/4, 21, 11/2, 23, 3/2, 25, 13/2, 27, 7/4, 29, 15/2, 31, 2, 33, 17/2, 35,
...
Numerators begin:
1,  5,  3,  7, 1,  9,  5, 11, 3, 13,  7, 15, 1, 17,  9, 19,
5, 21, 11, 23, 3, 25, 13, 27, 7, 29, 15, 31, 2, 33, 17, 35,
...
Periodic part = [4, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1];
		

Crossrefs

Programs

  • Magma
    [Denominator((n+4)/Gcd(n,4)^2): n in [0..100]]; // G. C. Greubel, Aug 05 2018
  • Mathematica
    a[n_] := (n+4)/GCD[n, 4]^2 // Denominator;  Table[a[n], {n, 0, 100}]
    (* or: *)
    Table[{1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 4}[[Mod[n, 16, 1]]], {n, 0, 100}]
  • PARI
    for(n=0,100, print1(denominator((n+4)/gcd(n,4)^2), ", ")) \\ G. C. Greubel, Aug 05 2018
    

Formula

(n+4) / gcd(n, 4)^2 = A188134(n+4) / 4. - Michael Somos, Sep 12 2014
a(n) = a(n+16) = a(-n), a(2*n + 1) = 1 for all n in Z. - Michael Somos, Sep 13 2014