A247052 Primes composed of only digits with line segments or both line segments and curves {1, 2, 4, 5, 7}.
2, 5, 7, 11, 17, 41, 47, 71, 127, 151, 157, 211, 227, 241, 251, 257, 271, 277, 421, 457, 521, 541, 547, 557, 571, 577, 727, 751, 757, 1117, 1151, 1171, 1217, 1277, 1427, 1447, 1451, 1471, 1511, 1571, 1721, 1741, 1747, 1777, 2111, 2141, 2221, 2251, 2411, 2417
Offset: 1
Examples
127 is in the sequence because it is prime and composed of digits 1, 2 and 7 only. 1427 is in the sequence because it is prime and composed of digits 1, 2, 4 and 7 only. a(129) = 12457 is the smallest prime using all the digits 1, 2, 4, 5 and 7 only once.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..15000
Programs
-
Magma
[NthPrime(n): n in [1..400] | Set(Intseq(NthPrime(n))) subset [1,2,4,5,7] ]; // Vincenzo Librandi, Sep 19 2014
-
Mathematica
Select[Prime[Range[500]], Intersection[IntegerDigits[#], {0, 3, 6, 8, 9}] == {} &]
-
Python
from sympy import prime for n in range(1,10**3): s = str(prime(n)) if not (s.count('0') + s.count('3') + s.count('6') + s.count('8') + s.count('9')): print(s,end=', ') # Derek Orr, Sep 18 2014
Comments