A349687 Numbers whose numerator and denominator of their abundancy index are both Fibonacci numbers.
1, 2, 6, 15, 24, 26, 28, 84, 90, 96, 120, 270, 330, 496, 672, 1335, 1488, 1540, 1638, 8128, 24384, 27280, 44109, 68200, 131040, 447040, 523776, 18506880, 22256640, 33550336, 36197280, 38257095, 65688320, 91963648, 95472000, 100651008, 102136320, 176432256, 197308800
Offset: 1
Keywords
Examples
2 is a term since sigma(2)/2 = 3/2 = Fibonacci(4)/Fibonacci(3). 15 is a term since sigma(15)/15 = 8/5 = Fibonacci(6)/Fibonacci(5).
Links
- Michel Marcus, 85 terms (some terms might be missing in this list).
Crossrefs
Programs
-
Mathematica
fibQ[n_] := Or @@ IntegerQ /@ Sqrt[{5 n^2 - 4, 5 n^2 + 4}]; ai[n_] := DivisorSigma[1, n]/n; q[n_] := fibQ[Numerator[(ain = ai[n])]] && fibQ[Denominator[ain]]; Select[Range[10^6], q]
-
PARI
isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8)); isok(n) = my(q=sigma(n)/n); isfib(numerator(q)) && isfib(denominator(q)); \\ Michel Marcus, Nov 25 2021
Comments