A247100 The number of ways to write an n-bit binary string and then define each run of ones as an element in an equivalence relation.
1, 2, 4, 9, 21, 51, 127, 324, 844, 2243, 6073, 16737, 46905, 133556, 386062, 1132107, 3365627, 10137559, 30920943, 95457178, 298128278, 941574417, 3006040523, 9697677885, 31602993021, 104001763258, 345524136076, 1158570129917, 3919771027105, 13377907523151
Offset: 0
Keywords
Examples
The labeled-run binary strings can be written as follows. For n=1: 0, 1. For n=2: 00, 01, 10, 11. For n=3: 000, 001, 010, 100, 011, 110, 111, 101, 102. For n=4: 0000, 0001, 0010, 0100, 1000, 0011, 0110, 1100, 0111, 1110, 1111, 0101, 0102, 1001, 1002, 1010, 1020, 1011, 1022, 1101, 1102. For n=5, the original binary string 10101 can be written as 10101, 10102, 10201, 10202, or 10203 because there are 3 runs of ones and Bell(3)=5.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
with(combinat): a:= n-> (t-> add(binomial(t, 2*j)*bell(j), j=0..t/2))(n+1): seq(a(n), n=0..30); # Alois P. Heinz, Aug 10 2015
-
Mathematica
Table[1 + Sum[Binomial[n+1,2*k] * BellB[k],{k,1,Ceiling[n/2]}],{n,1,40}] (* Vaclav Kotesovec, Jan 08 2015 after Andrew Woods *)
Formula
a(n) = 1 + Sum_{k=1..ceiling(n/2)} binomial(n+1, 2k)*Bell(k), where Bell(x) refers to Bell numbers (A000110).
Extensions
a(0)=1 prepended by Alois P. Heinz, Aug 08 2015
Comments