cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247159 Sum of divisors of even semiprimes.

Original entry on oeis.org

7, 12, 18, 24, 36, 42, 54, 60, 72, 90, 96, 114, 126, 132, 144, 162, 180, 186, 204, 216, 222, 240, 252, 270, 294, 306, 312, 324, 330, 342, 384, 396, 414, 420, 450, 456, 474, 492, 504, 522, 540, 546, 576, 582, 594, 600, 636, 672, 684, 690, 702, 720, 726
Offset: 1

Views

Author

Omar E. Pol, Nov 21 2014

Keywords

Examples

			For n = 4 the 4th prime is 7 so the 4th even semiprime is 2*7 = 14. The sum of the divisors of 14 is 1 + 2 + 7 + 14 = 24, so a(4) = 24.
		

Crossrefs

Programs

  • Magma
    [7] cat [3*NthPrime(n)+3: n in [2..60]]; // Vincenzo Librandi, Jan 09 2018
  • Mathematica
    DivisorSigma[1,#]&/@Select[Range[2,500,2],PrimeOmega[#]==2&] (* Harvey P. Dale, Jan 09 2015 *)
    Join[{7}, Rest[3 Prime[Range[5000]] + 3]] (* Vincenzo Librandi, Jan 09 2018 *)
  • PARI
    v=3*apply(k->k+1, primes(100)); v[1]=7; v \\ Charles R Greathouse IV, Nov 22 2014
    

Formula

a(n) = sigma(2*prime(n)) = A000203(2*A000040(n)) = A000203(A100484(n)).
a(n) = 3*prime(n) + 3 for n > 1. - Charles R Greathouse IV, Nov 22 2014