A245685 Sigma(2p)/2, for odd primes p.
6, 9, 12, 18, 21, 27, 30, 36, 45, 48, 57, 63, 66, 72, 81, 90, 93, 102, 108, 111, 120, 126, 135, 147, 153, 156, 162, 165, 171, 192, 198, 207, 210, 225, 228, 237, 246, 252, 261, 270, 273, 288, 291, 297, 300, 318, 336, 342, 345, 351, 360, 363, 378, 387, 396, 405
Offset: 1
Examples
a(4) = T(22, 1) - T(22, 4) = 22 - 4 = 18 = sigma(22)/2 The last image in the Example section of A237593 includes the first four symmetric representations for this sequence, i.e., when 2*p = 10, 14, 22 & 26; see also the link for an image of the first 10 symmetric representations.
Links
- Hartmut F. W. Hoft, Proofs of properties of sigma(2p)
- Hartmut F. W. Hoft, Visualization of sigma(2p)
Programs
-
Magma
[3*(NthPrime(n+1)+1)/2: n in [1..60]]; // Vincenzo Librandi, Sep 19 2014
-
Mathematica
a[n_]:=3(Prime[n+1]+1)/2 Map[a,Range[55]] (* data *) DivisorSigma[1,2#]/2&/@Prime[Range[2,60]] (* Harvey P. Dale, Jan 07 2023 *)
-
PARI
vector(100,n,3*(prime(n+1)+1)/2) \\ Derek Orr, Sep 19 2014
-
PARI
vector(60, n, sigma(2*prime(n+1))/2) \\ Michel Marcus, Nov 25 2014
Formula
a(n) = T(2*prime(n+1), 1) - T(2*prime(n+1), 4) = 3*(prime(n+1)+1)/2 = sigma(2*prime(n+1))/2 where T(n,k) is defined in A235791.
a(n)=A247159(n+1)/2. - Omar E. Pol, Nov 22 2014
Comments