cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A249223 Triangle read by rows: row n gives partial alternating sums of row n of A237048.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 2, 2, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 2, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 2, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 2
Offset: 1

Views

Author

Hartmut F. W. Hoft, Oct 23 2014

Keywords

Comments

All entries in the triangle are nonnegative since the number of 1's in odd-numbered columns of A237048 prior to column j, 1 <= j <= row(n), is at least as large as the number of 1's in even-numbered columns through column j. As a consequence:
(a) The two adjacent symmetric Dyck paths whose legs are defined by adjacent rows of triangle A237593 never cross each other (see also A235791 and A237591) and the rows in this triangle describe the widths between the legs.
(b) Let legs(n) denote the n-th row of triangle A237591, widths(n) the n-th row of this triangle, and c(n) the rightmost entry in the n-th row of this triangle (center of the Dyck path). Then area(n) = 2 * legs(n) . width(n) - c(n), where "." is the inner product, is the area between the two adjacent symmetric Dyck paths.
(c) For certain sequences of integers, it is known that area(n) = sigma(n); see A238443, A245685, A246955, A246956 and A247687.
Right border gives A067742. - Omar E. Pol, Jan 21 2017
For a proof that T(n, k) = |{ d : d|n and k/2 < d <= k }|, for 1 <= k <= row(n), where row(n) is the length of row n, an identity suggested by Peter Munn, see the link. A corollary to it is that the number of divisors of n in the half-open interval (row(n)/2, row(n)] equals the width of the symmetric representation of n at the diagonal: T(n, row(n)) = | { d : d|n and row(n)/2 < d <= row(n) } |. See also the comments and conjectures of Michel Marcus in A067742 and A237593. - Hartmut F. W. Hoft, Jun 24 2024
From Omar E. Pol, Jul 24 2024: (Start)
Conjecture 1: Every column is a periodic sequence.
Conjecture 2: The periods of the columns 1..8 are respectively: 1, 2, 6, 12, 60, 60, 420, 840.
Question 1: Is the period of the column k equal to A003418(k)? (End).
From Omar E. Pol, Jul 26 2024: (Start)
Column 1 gives A000012.
Column 2 gives A000035.
Conjecture 3: Column 3 gives [2, 0] together with A115357, hence column 3 gives 2 together with A171182.
Question 2: Except the first nine terms of A337976, is the column 4 the same as A337976?
Question 3: Except the first 14 terms of A366981, is the column 5 the same as A366981? (End)
From Hartmut F. W. Hoft, Aug 01 2024: (Start)
Conjectures 1 and 2 are true and the answer to question 1 is affirmative.
By definition, each column k in triangle T237048(n, k) of sequence A237048 is a periodic sequence of period k. Since the k-th term in row n of the triangle T(n, k) = Sum_{i=1..k} (-1)^(i+1) * T237048(n, i), with 1 <= k <= A003056(n), each initial subsequence T(n, 1) .. T(n, k) of row n in this triangle is periodic of period lcm(1, .. , k) = A003418(k). This implies that each column k in this sequence has period A003418(k).
Conjecture 3 and Question 2 are true. Since T237048(n, 1) = 1, T237208(n, 2) = 1 if n odd and 0 if n even, T237048(n, 3) = 1 if 3|n and 0 otherwise, and T237048(n, 4) = 1 if 4|(n-2) and 0 otherwise, equations T249223(n, 3) = 1 - (n mod 2) + delta( n mod 3) and T249223(n, 4) = 1 - (n mod 2) + delta( n mod 3) - delta( (n-2) mod 4) hold where delta(k) = 1 if k = 0 and 0 otherwise. With the 3rd column starting at n = A000217(3) = 6, each period starting in a row that is a multiple of 6 is [ 2 0 1 1 1 0 ], and appropriate shifts yield A115357 and A171182. With the 4th column starting at n = A000217(4) = 10, each period starting in a row n with 12|(n+2) is [ 0 0 2 0 0 1 1 0 1 0 1 1 ], and with a shift of 9 yields the apparently periodic A337976(10), A337976(11), ... (End)

Examples

			Triangle begins:
---------------------------
   n \ k  1  2  3  4  5  6
---------------------------
   1 |    1;
   2 |    1;
   3 |    1, 0;
   4 |    1, 1;
   5 |    1, 0;
   6 |    1, 1, 2;
   7 |    1, 0, 0;
   8 |    1, 1, 1;
   9 |    1, 0, 1;
  10 |    1, 1, 1, 0;
  11 |    1, 0, 0, 0;
  12 |    1, 1, 2, 2;
  13 |    1, 0, 0, 0;
  14 |    1, 1, 1, 0;
  15 |    1, 0, 1, 1, 2;
  16 |    1, 1, 1, 1, 1;
  17 |    1, 0, 0, 0, 0;
  18 |    1, 1, 2, 1, 1;
  19 |    1, 0, 0, 0, 0;
  20 |    1, 1, 1, 1, 2;
  21 |    1, 0, 1, 1, 1, 0;
  22 |    1, 1, 1, 0, 0, 0;
  23 |    1, 0, 0, 0, 0, 0;
  24 |    1, 1, 2, 2, 2, 2;
  ...
The triangle shows that area(n) has width 1 for powers of 2 and that area(p) for primes p consists of only 1 horizontal leg of width 1 (and its symmetric vertical leg in the mirror symmetric duplicate of this triangle).
		

Crossrefs

Programs

  • Maple
    r := proc(n) floor((sqrt(1+8*n)-1)/2) ; end proc: # R. J. Mathar 2015 A003056
    A237048:=proc(n,k) local i; global r;
    if n<(k-1)*k/2 or k>r(n) then return(0); fi;
    if (k mod 2)=1 and (n mod k)=0 then return(1); fi;
    if (k mod 2)=0 and ((n-k/2) mod k) = 0 then return(1); fi;
    return(0);
    end;
    A249223:=proc(n,k) local i; global r,A237048;
    if n<(k-1)*k/2 or k>r(n) then return(0); fi;
    add( (-1)^(i+1)*A237048(n,i),i=1..k);
    end;
    for n from 1 to 12 do lprint([seq(A249223(n,k),k=1..r(n))]); od; # N. J. A. Sloane, Jan 15 2021
  • Mathematica
    cd[n_, k_] := If[Divisible[n, k], 1, 0]; row[n_] := Floor[(Sqrt[8 n + 1] - 1)/2]; a237048[n_, k_] := If[OddQ[k], cd[n, k], cd[n - k/2, k]];
    a1[n_, k_] := Sum[(-1)^(j + 1)*a237048[n, j], {j, 1, k}];
    a2[n_] := Drop[FoldList[Plus, 0, Map[(-1)^(# + 1) &, Range[row[n]]] a237048[n]], 1]; Flatten[Map[a2, Range[24]]] (* data *) (* Corrected by G. C. Greubel, Apr 16 2017 *)
  • PARI
    t237048(n,k) = if (k % 2, (n % k) == 0, ((n - k/2) % k) == 0);
    kmax(n) = (sqrt(1+8*n)-1)/2;
    t(n,k) = sum(j=1, k, (-1)^(j+1)*t237048(n,j));
    tabf(nn) = {for (n=1, nn, for (k=1, kmax(n), print1(t(n,k), ", ");); print(););} \\ Michel Marcus, Sep 20 2015

Formula

T(n, k) = Sum_{j=1..k} (-1)^(j+1)*A237048(n, j), for n>=1 and 1 <= k <= floor((sqrt(8*n + 1) - 1)/2). - corrected by Hartmut F. W. Hoft, Jan 25 2018

A249351 Triangle read by rows in which row n lists the widths of the symmetric representation of sigma(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Oct 26 2014

Keywords

Comments

Here T(n,k) is defined to be the "k-th width" of the symmetric representation of sigma(n), with n>=1 and 1<=k<=2n-1. Explanation: consider the diagram of the symmetric representation of sigma(n) described in A236104, A237593 and other related sequences. Imagine that the diagram for sigma(n) contains 2n-1 equidistant segments which are parallel to the main diagonal [(0,0),(n,n)] of the quadrant. The segments are located on the diagonal of the cells. The distance between two parallel segment is equal to sqrt(2)/2. T(n,k) is the length of the k-th segment divided by sqrt(2). Note that the triangle contains nonnegative terms because for some n the value of some widths is equal to zero. For an illustration of some widths see Hartmut F. W. Hoft's contribution in the Links section of A237270.
Row n has length 2*n-1.
Row sums give A000203.
If n is a power of 2 then all terms of row n are 1's.
If n is an even perfect number then all terms of row n are 1's except the middle term which is 2.
If n is an odd prime then row n lists (n+1)/2 1's, n-2 zeros, (n+1)/2 1's.
The number of blocks of positive terms in row n gives A237271(n).
The sum of the k-th block of positive terms in row n gives A237270(n,k).
It appears that the middle diagonal is also A067742 (which was conjectured by Michel Marcus in the entry A237593 and checked with two Mathematica functions up to n = 100000 by Hartmut F. W. Hoft).
It appears that the trapezoidal numbers (A165513) are also the numbers k > 1 with the property that some of the noncentral widths of the symmetric representation of sigma(k) are not equal to 1. - Omar E. Pol, Mar 04 2023

Examples

			Triangle begins:
  1;
  1,1,1;
  1,1,0,1,1;
  1,1,1,1,1,1,1;
  1,1,1,0,0,0,1,1,1;
  1,1,1,1,1,2,1,1,1,1,1;
  1,1,1,1,0,0,0,0,0,1,1,1,1;
  1,1,1,1,1,1,1,1,1,1,1,1,1,1,1;
  1,1,1,1,1,0,0,1,1,1,0,0,1,1,1,1,1;
  1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1;
  1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1;
  1,1,1,1,1,1,1,1,1,2,2,2,2,2,1,1,1,1,1,1,1,1,1;
  ...
---------------------------------------------------------------------------
.        Written as an isosceles triangle              Diagram of
.              the sequence begins:               the symmetry of sigma
---------------------------------------------------------------------------
.                                                _ _ _ _ _ _ _ _ _ _ _ _
.                      1;                       |_| | | | | | | | | | | |
.                    1,1,1;                     |_ _|_| | | | | | | | | |
.                  1,1,0,1,1;                   |_ _|  _|_| | | | | | | |
.                1,1,1,1,1,1,1;                 |_ _ _|    _|_| | | | | |
.              1,1,1,0,0,0,1,1,1;               |_ _ _|  _|  _ _|_| | | |
.            1,1,1,1,1,2,1,1,1,1,1;             |_ _ _ _|  _| |  _ _|_| |
.          1,1,1,1,0,0,0,0,0,1,1,1,1;           |_ _ _ _| |_ _|_|    _ _|
.        1,1,1,1,1,1,1,1,1,1,1,1,1,1,1;         |_ _ _ _ _|  _|     |
.      1,1,1,1,1,0,0,1,1,1,0,0,1,1,1,1,1;       |_ _ _ _ _| |      _|
.    1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1;     |_ _ _ _ _ _|  _ _|
.  1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1;   |_ _ _ _ _ _| |
.1,1,1,1,1,1,1,1,1,2,2,2,2,2,1,1,1,1,1,1,1,1,1; |_ _ _ _ _ _ _|
...
From _Omar E. Pol_, Nov 22 2020: (Start)
Also consider the infinite double-staircases diagram defined in A335616.
For n = 15 the diagram with first 15 levels looks like this:
.
Level                         "Double-staircases" diagram
.                                          _
1                                        _|1|_
2                                      _|1 _ 1|_
3                                    _|1  |1|  1|_
4                                  _|1   _| |_   1|_
5                                _|1    |1 _ 1|    1|_
6                              _|1     _| |1| |_     1|_
7                            _|1      |1  | |  1|      1|_
8                          _|1       _|  _| |_  |_       1|_
9                        _|1        |1  |1 _ 1|  1|        1|_
10                     _|1         _|   | |1| |   |_         1|_
11                   _|1          |1   _| | | |_   1|          1|_
12                 _|1           _|   |1  | |  1|   |_           1|_
13               _|1            |1    |  _| |_  |    1|            1|_
14             _|1             _|    _| |1 _ 1| |_    |_             1|_
15            |1              |1    |1  | |1| |  1|    1|              1|
.
Starting from A196020 and after the algorithm described in A280850 and A296508 applied to the above diagram we have a new diagram as shown below:
.
Level                             "Ziggurat" diagram
.                                          _
6                                         |1|
7                            _            | |            _
8                          _|1|          _| |_          |1|_
9                        _|1  |         |1   1|         |  1|_
10                     _|1    |         |     |         |    1|_
11                   _|1      |        _|     |_        |      1|_
12                 _|1        |       |1       1|       |        1|_
13               _|1          |       |         |       |          1|_
14             _|1            |      _|    _    |_      |            1|_
15            |1              |     |1    |1|    1|     |              1|
.
The 15th row
of this seq:  [1,1,1,1,1,1,1,1,0,0,0,1,1,1,2,1,1,1,0,0,0,1,1,1,1,1,1,1,1]
The 15th row
of A237270:   [              8,            8,            8              ]
The 15th row
of A296508:   [              8,      7,    1,    0,      8              ]
The 15th row
of A280851    [              8,      7,    1,            8              ]
.
The number of horizontal steps (or 1's) in the successive columns of the above diagram gives the 15th row of this triangle.
For more information about the parts of the symmetric representation of sigma(n) see A237270. For more information about the subparts see A239387, A296508, A280851.
More generally, it appears there is the same correspondence between the original diagram of the symmetric representation of sigma(n) and the "Ziggurat" diagram of n. (End)
		

Crossrefs

Programs

  • Mathematica
    (* function segments are defined in A237270 *)
    a249351[n_] := Flatten[Map[segments, Range[n]]]
    a249351[10] (* Hartmut F. W. Hoft, Jul 20 2022 *)

A262611 Triangle read by rows in which row n lists the widths of the symmetric representation of A024916(n): the sum of all divisors of all positive integers <= n.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 3, 3, 3, 2, 1, 1, 2, 3, 3, 3, 3, 3, 2, 1, 1, 2, 3, 4, 4, 5, 4, 4, 3, 2, 1, 1, 2, 3, 4, 4, 4, 5, 4, 4, 4, 3, 2, 1, 1, 2, 3, 4, 5, 5, 5, 6, 5, 5, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 5, 5, 6, 7, 6, 5, 5, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 6, 6, 7, 7, 7, 6, 6, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 6, 6, 6, 7, 7, 7, 6, 6, 6, 6, 5, 4, 3, 2, 1
Offset: 1

Views

Author

Omar E. Pol, Sep 26 2015

Keywords

Comments

Here T(n,k) is defined to be the "k-th width" of the symmetric representation of A024916(n), with n>=1 and 1<=k<=2n-1.
If both A249351 and this sequence are written as isosceles triangles then the partial sums of the columns of A249351 give the columns of this isosceles triangle (see the second triangle in Example section).
For the definition of the k-th width of the symmetric representation of sigma(n) see A249351.
Note that for the geometric representation of the n-th row of the triangle we need the x-axis, the y-axis, and only a Dyck path which is given by the elements of the n-th row of the triangle A237593.
Row n has length 2*n-1.
Row sums give A024916.
The middle diagonal is A240542.

Examples

			Triangle begins:
1;
1,2,1;
1,2,2,2,1;
1,2,3,3,3,2,1;
1,2,3,3,3,3,3,2,1;
1,2,3,4,4,5,4,4,3,2,1;
1,2,3,4,4,4,5,4,4,4,3,2,1;
1,2,3,4,5,5,5,6,5,5,5,4,3,2,1;
1,2,3,4,5,5,5,6,7,6,5,5,5,4,3,2,1;
1,2,3,4,5,6,6,6,7,7,7,6,6,6,5,4,3,2,1;
1,2,3,4,5,6,6,6,6,7,7,7,6,6,6,6,5,4,3,2,1;
1,2,3,4,5,6,7,7,7,8,9,9,9,8,7,7,7,6,5,4,3,2,1;
...
--------------------------------------------------------------------------
.        Written as an isosceles triangle
.              the sequence begins:               Diagram for n = 1..12
--------------------------------------------------------------------------
.                                                _ _ _ _ _ _ _ _ _ _ _ _
.                      1;                       |_| | | | | | | | | | | |
.                    1,2,1;                     |_ _|_| | | | | | | | | |
.                  1,2,2,2,1;                   |_ _|  _|_| | | | | | | |
.                1,2,3,3,3,2,1;                 |_ _ _|    _|_| | | | | |
.              1,2,3,3,3,3,3,2,1;               |_ _ _|  _|  _ _|_| | | |
.            1,2,3,4,4,5,4,4,3,2,1;             |_ _ _ _|  _| |  _ _|_| |
.          1,2,3,4,4,4,5,4,4,4,3,2,1;           |_ _ _ _| |_ _|_|    _ _|
.        1,2,3,4,5,5,5,6,5,5,5,4,3,2,1;         |_ _ _ _ _|  _|     |
.      1,2,3,4,5,5,5,6,7,6,5,5,5,4,3,2,1;       |_ _ _ _ _| |      _|
.    1,2,3,4,5,6,6,6,7,7,7,6,6,6,5,4,3,2,1;     |_ _ _ _ _ _|  _ _|
.  1,2,3,4,5,6,6,6,6,7,7,7,6,6,6,6,5,4,3,2,1;   |_ _ _ _ _ _| |
.1,2,3,4,5,6,7,7,7,8,9,9,9,8,7,7,7,6,5,4,3,2,1; |_ _ _ _ _ _ _|
...
For n = 3 the symmetric representation of A024916(3) = 8 in the 4th quadrant looks like this:
.
.    Polygon         Cells
.     _ _ _          _ _ _
.    |     |        |_|_|_|
.    |    _|        |_|_|_|
.    |_ _|          |_|_|
.
There are eight cells. The representation of the widths looks like this:
.
.     \ \ \
.     \ \ \
.     \ \    1
.          2 2
.        1 2
.
So the third row of the triangle is [1, 2, 2, 2, 1].
		

Crossrefs

A244250 Triangle read by rows in which row n lists the widths in the first octant of the symmetric representation of sigma(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Omar E. Pol, Oct 26 2014

Keywords

Comments

For the definition of k-th width of the symmetric representation of sigma(n) see A249351.
Row n list the first n terms of the n-th row of A249351.
It appears that the leading diagonal is also A067742 (which was conjectured by Michel Marcus in the entry A237593 and checked with two Mathematica functions up to n = 100000 by Hartmut F. W. Hoft).
For more information see A237591, A237593.

Examples

			Triangle begins:
1;
1, 1;
1, 1, 0;
1, 1, 1, 1;
1, 1, 1, 0, 0;
1, 1, 1, 1, 1, 2;
1, 1, 1, 1, 0, 0, 0;
1, 1, 1, 1, 1, 1, 1, 1;
1, 1, 1, 1, 1, 0, 0, 1, 1;
1, 1, 1, 1, 1, 1, 1, 1, 1, 0;
1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0;
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2;
1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0;
...
		

Crossrefs

A247159 Sum of divisors of even semiprimes.

Original entry on oeis.org

7, 12, 18, 24, 36, 42, 54, 60, 72, 90, 96, 114, 126, 132, 144, 162, 180, 186, 204, 216, 222, 240, 252, 270, 294, 306, 312, 324, 330, 342, 384, 396, 414, 420, 450, 456, 474, 492, 504, 522, 540, 546, 576, 582, 594, 600, 636, 672, 684, 690, 702, 720, 726
Offset: 1

Views

Author

Omar E. Pol, Nov 21 2014

Keywords

Examples

			For n = 4 the 4th prime is 7 so the 4th even semiprime is 2*7 = 14. The sum of the divisors of 14 is 1 + 2 + 7 + 14 = 24, so a(4) = 24.
		

Crossrefs

Programs

  • Magma
    [7] cat [3*NthPrime(n)+3: n in [2..60]]; // Vincenzo Librandi, Jan 09 2018
  • Mathematica
    DivisorSigma[1,#]&/@Select[Range[2,500,2],PrimeOmega[#]==2&] (* Harvey P. Dale, Jan 09 2015 *)
    Join[{7}, Rest[3 Prime[Range[5000]] + 3]] (* Vincenzo Librandi, Jan 09 2018 *)
  • PARI
    v=3*apply(k->k+1, primes(100)); v[1]=7; v \\ Charles R Greathouse IV, Nov 22 2014
    

Formula

a(n) = sigma(2*prime(n)) = A000203(2*A000040(n)) = A000203(A100484(n)).
a(n) = 3*prime(n) + 3 for n > 1. - Charles R Greathouse IV, Nov 22 2014

A364421 For n >= 3, r >= 0, y an integer, a(n) is the number of integral solutions to the elliptic equation y^2 = n^3 + n^2 + 2*r*n + r^2.

Original entry on oeis.org

2, 2, 2, 3, 2, 4, 3, 4, 2, 8, 2, 4, 8, 5, 2, 7, 2, 9, 8, 4, 2, 15, 3, 4, 5, 10, 2, 15, 2, 7, 8, 4, 8, 17, 2, 4, 8, 15, 2, 15, 2, 10, 14, 4, 2, 22, 3, 7, 8, 9, 2, 10, 8, 15, 8, 4, 2, 38, 2, 4, 14, 8, 8, 15, 2, 9, 7, 16, 2, 27, 2, 4, 13, 9, 8, 15, 2, 22, 6, 4, 2, 39, 8, 4, 7, 16, 2, 27, 8, 10
Offset: 3

Views

Author

Ctibor O. Zizka, Sep 01 2023

Keywords

Comments

The equation y^2 = n^3 + A*n^2 + B*n + C, where A = 1, B = 2*r, C = r^2 is a minimal model of an elliptic curve with integral coefficients, for details see the Links section.
For a prime number p >= 5, the equation y^2 = p^3 + (p + r)^2 has 2 solutions, r_1 = p*(p - 3)/2 and r_2 = (p + 1)*(p^2 - p - 1)/2.
Factoring the equation y^2 = n^3 + n^2 + 2*r*n + r^2 yields (y+n+r)*(y-n-r) = n^3, which implies y+n+r = d and y-n-r = n^3/d for some divisor d of n^3. Thus a(n) is the number of divisors d of n^3 such that (d-n^3/d)/2 - n is a nonnegative integer. This resolves some of Thomas Scheuerle's conjectures. - Robin Visser, Sep 30 2023

Examples

			n = 6: y^2 = 6^3 + (6 + r)^2 is valid for r = 9, 19, 47, thus a(6) = 3. The 3 solutions [y, n, n+r] are [21, 6, 15], [29, 6, 25], [55, 6, 53].
		

Crossrefs

Programs

  • PARI
    a(n) = length(select((x) -> x[1] >= 0 && x[2] >= n, thue(thueinit(x^2-1,1),n^3),1)) \\ Thomas Scheuerle, Sep 03 2023
    
  • Sage
    def a(n):
        num_sols = 0
        for d in Integer(n^3).divisors():
            if ((d-n^3/d)%2 == 0) and ((d-n^3/d)/2 >= n): num_sols += 1
        return num_sols  # Robin Visser, Sep 30 2023

Formula

a(p) = 2 for p prime >= 5, see Comments.
From Thomas Scheuerle, Sep 04 2023: (Start)
Conjecture: a(A190300(n)) = 3.
Conjecture: a(A196226(n)) = 4.
Conjecture: a(p^3) = 5 if p is an odd prime.
Conjecture: a(2*p^2) = 7 if p is an odd prime. But there exist other cases too, for example a(3*23) = 7.
Conjecture: a(prime(n)^prime(n)) = A245685(n - 1) - 1. (End)

Extensions

a(61)-a(92) from Thomas Scheuerle, Sep 01 2023
Showing 1-6 of 6 results.