cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247170 Expansion of (-3/2+(x^3+3*x)/(sqrt(x^4-4*x^3-2*x^2+1)*2*x)).

Original entry on oeis.org

0, 2, 3, 2, 10, 11, 21, 50, 66, 152, 275, 467, 988, 1717, 3283, 6386, 11560, 22556, 42465, 79832, 154122, 290039, 554323, 1060259, 2012310, 3859286, 7365423, 14072333, 26980788, 51580271, 98873291, 189567090, 363277676, 697348910
Offset: 1

Views

Author

Vladimir Kruchinin, Nov 21 2014

Keywords

Crossrefs

Cf. A025250.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 36); [0] cat Coefficients(R!( (-3/2+(x^3+3*x)/(Sqrt(x^4-4*x^3-2*x^2+1)*2*x)))); // Marius A. Burtea, Feb 11 2020
    
  • Magma
    [n*&+[Binomial(k,n-2*k)*Binomial(n-k-1,k-1)/k:k in [1..n]]:n in [1..35]]; // Marius A. Burtea, Feb 11 2020
  • Mathematica
    Table[n*Sum[(Binomial[k,n-2k]Binomial[n-k-1,k-1])/k,{k,n}],{n,40}] (* Harvey P. Dale, Oct 04 2017 *)
  • Maxima
    a(n):=n*sum((binomial(k,n-2*k)*binomial(n-k-1,k-1))/k,k,1,n);
    

Formula

a(n) = n*Sum_{k=1..n} binomial(k,n-2*k)*binomial(n-k-1,k-1)/k.
From R. J. Mathar, Jan 25 2020: (Start)
D-finite with recurrence: +3*n*a(n) +3*(n-1)*a(n-1) +(-5*n+2)*a(n-2) +(-17*n+25)*a(n-3) +(-11*n+34)*a(n-4) +(-3*n+25)*a(n-5) +(-3*n+20)*a(n-6) +(n-7)*a(n-7) = 0.
Conjectured: +n*(2*n-7)*a(n) +(n-1)*(2*n-9)*a(n-1) +2*(-2*n^2+9*n-6)*a(n-2) +2*(-6*n^2+33*n-38)*a(n-3) +3*(-2*n^2+15*n-26)*a(n-4) +(2*n-5)*(n-5)*a(n-5) = 0.
(End)