A247203 Primes p such that phi(p-2) = phi(p-1) and simultaneously Product_{d|(p-2)} phi(d) = Product_{d|(p-1)} phi(d) where phi(x) = Euler totient function (A000010).
3, 5, 17, 257, 65537, 991172807, 1872619667, 4081364447
Offset: 1
Examples
17 is in the sequence because phi(15) = phi(16) = 8 and simultaneously Product_{d|15} phi(d) = Product_{d|16} phi(d) = 64.
Programs
-
Magma
[p: p in PrimesInInterval(3, 10^7) | (&*[EulerPhi(d): d in Divisors(p-2)]) eq (&*[EulerPhi(d): d in Divisors(p-1)]) and EulerPhi(p-2) eq EulerPhi(p-1)];
-
Magma
[n: n in [A248796(n)] | IsPrime(n) and EulerPhi(n-2) eq EulerPhi(n-1)];
-
Magma
[n: n in [A247164(n)] | IsPrime(n) and EulerPhi(n-2) eq EulerPhi(n-1)];
Extensions
a(7)-a(8) from Jinyuan Wang, Jul 27 2025
Comments