cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A248796 Numbers k such that Product_{d|(k-2)} phi(d) = Product_{d|(k-1)} phi(d) where phi(x) = Euler totient function (A000010).

Original entry on oeis.org

3, 5, 7, 17, 257, 65537, 2200696, 2619707, 6372796, 40588487, 76466987, 81591196, 118018096, 206569607, 470542487, 525644387, 726638836, 791937616, 971122516, 991172807, 1268457016, 1384822007, 1613055047, 1709460755, 1861556656, 1872619667, 2507927416, 2659263947
Offset: 1

Views

Author

Jaroslav Krizek, Nov 19 2014

Keywords

Comments

Numbers k such that A029940(k-2) = A029940(k-1).
The first 5 known Fermat primes (A019434) are terms of this sequence.

Examples

			17 is in the sequence because A029940(15) = A029940(16) = 64.
		

Crossrefs

Supersequence of A247164 and A247203.

Programs

  • Magma
    [n: n in [3..100000] | (&*[EulerPhi(d): d in Divisors(n-2)]) eq (&*[EulerPhi(d): d in Divisors(n-1)])];

Formula

a(n) = A248795(n) + 2.
A029940(a(n)) = a(n) - 1 if a(n) = prime.

Extensions

a(7)-a(9) using A248795 by Jaroslav Krizek, Nov 19 2014
a(10)-a(20) using A248795 by Jaroslav Krizek, Nov 25 2014
More terms from Jinyuan Wang, Jul 27 2025

A247164 Primes p such that Product_{d|(p-2)} phi(d) = Product_{d|(p-1)} phi(d) where phi(x) = Euler totient function (A000010).

Original entry on oeis.org

3, 5, 7, 17, 257, 65537, 991172807, 1872619667, 4081364447
Offset: 1

Views

Author

Jaroslav Krizek, Nov 21 2014

Keywords

Comments

Primes p such that A029940(p-2) = A029940(p-1).
First 5 known terms of Fermat primes (A019434) are terms of this sequence.

Examples

			Prime 17 is in the sequence because A029940(15) = A029940(16) = 64.
		

Crossrefs

Subsequence of A248796. Supersequence of A247203.

Programs

  • Magma
    [n: n in [3..100000] |  IsPrime(n) and (&*[EulerPhi(d): d in Divisors(n-2)]) eq (&*[EulerPhi(d): d in Divisors(n-1)])];

Formula

A029940(a(n)) = a(n) - 1.

Extensions

a(8)-a(9) from Jinyuan Wang, Jul 27 2025
Showing 1-2 of 2 results.