A248795 Numbers k such that Product_{d|k} phi(d) = Product_{d|(k+1)} phi(d) where phi(x) = Euler totient function (A000010).
1, 3, 5, 15, 255, 65535, 2200694, 2619705, 6372794, 40588485, 76466985, 81591194, 118018094, 206569605, 470542485, 525644385, 726638834, 791937614, 971122514, 991172805, 1268457014, 1384822005, 1613055045, 1709460753, 1861556654, 1872619665, 2507927414, 2659263945
Offset: 1
Keywords
Examples
15 is in the sequence because A029940(15) = A029940(16) = 64.
Programs
-
Magma
[n: n in [1..100000] | (&*[EulerPhi(d): d in Divisors(n)]) eq (&*[EulerPhi(d): d in Divisors(n+1)])];
-
Mathematica
a248795[n_Integer] := Select[Range[n], Product[EulerPhi[i], {i, Divisors[#]}] == Product[EulerPhi[j], {j, Divisors[# + 1]}] &]; a248795[10^5] (* Michael De Vlieger, Nov 30 2014 *)
-
PARI
lista(nn) = {d = divisors(1); vcur = prod(k=1, #d, eulerphi(d[k])); for (n=2, nn, d = divisors(n); vnext = prod(k=1, #d, eulerphi(d[k])); if (vnext == vcur, print1(n-1, ", ")); vcur = vnext;);} \\ Michel Marcus, Nov 23 2014
Formula
a(n) = A248796(n) - 2.
Extensions
a(7)-a(9) from Michel Marcus, Nov 21 2014
a(10)-a(20) from Michel Marcus, Nov 23 2014
More terms from Jinyuan Wang, Jul 27 2025
Comments