A247209 Number of terms in generalized Swinnerton-Dyer polynomials.
1, 2, 6, 35, 495, 20349, 2760681, 1329890705, 2353351951665, 15481400876017505, 379554034822178909121, 34676179189150610052785025, 11806724418359403847522843860225, 14998128029851443976142151169687652865, 71221988684076361563783957084457295633613825
Offset: 0
Examples
a(3) = 35. For the three numbers a, b, c, the general Swinnerton-Dyer polynomial is (sqrt(a)+sqrt(b)+sqrt(c)-z)(-sqrt(a)+sqrt(b)+sqrt(c)-z)(sqrt(a)-sqrt(b)+sqrt(c)-z)(-sqrt(a)-sqrt(b)+sqrt(c)-z)(sqrt(a)+sqrt(b)-sqrt(c)-z)(-sqrt(a)+sqrt(b)-sqrt(c)-z)(sqrt(a)-sqrt(b)-sqrt(c)-z)(-sqrt(a)-sqrt(b)-sqrt(c)-z) which expands to a^4-4a^3b+6a^2b^2-4ab^3+b^4-4a^3c+4a^2bc+4ab^2c-4b^3c+6a^2c^2+4abc^2+6b^2c^2-4ac^3-4bc^3+c^4- 4a^3z^2+4a^2bz^2+4ab^2z^2-4b^3z^2+4a^2cz^2-40abcz^2+ 4b^2cz^2+4ac^2z^2+4bc^2z^2-4c^3z^2+6a^2z^4+4abz^4+ 6b^2z^4+4acz^4+4bcz^4+6c^2z^4-4az^6-4bz^6-4cz^6+z^8 with 35 terms.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..60
- Allan Berele and Stefan Catoiu, Rationalizing Denominators, Mathematics Magazine, Vol. 88, No. 2 (2015), pp. 121-136.
- Les Tablettes du Chercheur, Problem 21, Solution to problem 21, Addition to problem 21, pp. 4, 30 and 64, 1892 (in French).
- Eric Weisstein's World of Mathematics, Swinnerton-Dyer Polynomial.
Crossrefs
Cf. A153731.
Programs
-
Maple
a:= n-> (t-> binomial(t+n, t))(2^(n-1)): seq(a(n), n=0..14); # Alois P. Heinz, Nov 28 2024
-
Mathematica
a[n_]:= Module[{a,x}, Length@Fold[Expand[(#1 /. x -> x + #2) (#1 /. x -> x - #2)] &, x, Sqrt[a /@ Range[n]]]]; a[0] = 1; Array[a, 5, 0] (* or *) a[n_]:= Binomial[2^(n - 1) + n, 2^(n - 1)]; Array[a, 10, 0]
Extensions
a(0) = 1 prepended by Michel Marcus, Jun 12 2022
Comments