A247271 Numbers n such that n^2+1 and 2*n^2+1 are both prime numbers.
1, 6, 24, 36, 66, 156, 204, 240, 264, 300, 306, 474, 570, 636, 750, 864, 936, 960, 1146, 1176, 1290, 1494, 1524, 1716, 1974, 2034, 2136, 2310, 2406, 2706, 2736, 2964, 3156, 3240, 3624, 3756, 3774, 3900, 3984, 4026, 4080, 4524, 4530, 4554, 4590, 4644, 4650, 4716
Offset: 1
Examples
a(2)=6 because A002522(6)=37 and A058331(6)=73 are both prime numbers.
Links
- Jens Kruse Andersen, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[n: n in [0..5000] | IsPrime(n^2+1) and IsPrime(2*n^2+1)]; // Vincenzo Librandi, Sep 14 2014
-
Maple
A247271:=n->`if`(isprime(n^2+1) and isprime(2*n^2+1), n, NULL): seq(A247271(n), n=1..10^4); # Wesley Ivan Hurt, Sep 12 2014
-
Mathematica
lst={}; Do[p=n^2+1; q=2n^2+1; If[PrimeQ[p] && PrimeQ[q], AppendTo[lst, n]], {n, 5000}]; lst
-
PARI
for(n=1,10^4,if(isprime(n^2+1)&&isprime(2*n^2+1),print1(n,", "))) \\ Derek Orr, Sep 11 2014
Comments