cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247296 Number of uhd and uHd in all weighted lattice paths B(n).

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 7, 18, 45, 112, 281, 706, 1778, 4490, 11363, 28814, 73199, 186257, 474635, 1211122, 3094171, 7913765, 20261142, 51921920, 133171656, 341836748, 878104607, 2257208148, 5805964495, 14942942127, 38480449261, 99145105834, 255573465001, 659114680270
Offset: 0

Views

Author

Emeric Deutsch, Sep 16 2014

Keywords

Comments

B(n) is the set of lattice paths of weight n that start in (0,0), end on the horizontal axis and never go below this axis, whose steps are of the following four kinds: h = (1,0) of weight 1, H = (1,0) of weight 2, u = (1,1) of weight 2, and d = (1,-1) of weight 1. The weight of a path is the sum of the weights of its steps.
a(n) = A110320(n-3) + A110320(n-4) (n>=5).

Examples

			a(6)=7 because among the 37 (=A004148(7)) members of B(6) only (uhd)hh, h(uhd)h, hh(uhd), H(uhd), (uhd)H, (uHd)h, and h(uHd) contain uhd or uHd (shown between parentheses).
G.f. = x^4 + 3*x^5 + 7*x^6 + 18*x^7 + 45*x^8 + 112*x^9 + 281*x^10 + ...
		

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); [0,0,0,0] cat Coefficients(R!(x*(x+1)*(-1 +(1-x-x^2 )/sqrt((1-3*x+x^2)*(1+x+x^2)) )/2)); // G. C. Greubel, Aug 05 2018
  • Maple
    eqg := g = 1+z*g+z^2*g+z^3*g^2: g := RootOf(eqg, g): H := z^4*(1+z)*g/(1-z-z^2-2*z^3*g): Hser := series(H, z = 0, 40): seq(coeff(Hser, z, n), n = 0 .. 35);
  • Mathematica
    a[ n_] := With[{t = (1 - 3 x + x^2) (1 + x + x^2)}, SeriesCoefficient[ x (x + 1) (-1 + (1 - x - x^2) / Sqrt[t]) / 2, {x, 0, n}]]; (* Michael Somos, Sep 16 2014 *)
  • PARI
    x='x+O('x^30); concat(vector(4), Vec(x*(x+1)*(-1 +(1-x-x^2 )/sqrt((1-3*x+x^2)*(1+x+x^2)))/2)) \\ G. C. Greubel, Aug 05 2018
    

Formula

G.f.: G = z^4*(1 + z)*g/(1 - z - z^2 - 2*z^3*g), where g = 1 + z*g + z^2*g + z^3*g^2.
D-finite with recurrence +(n-1)*(202*n-903)*a(n) +(-250*n^2+1095*n-691)*a(n-1) +(-510*n^2+4095*n-8039)*a(n-2) +(-558*n^2+4287*n-7831)*a(n-3) +(-106*n^2+1587*n-4575)*a(n-4) +(154*n-547)*(n-7)*a(n-5)=0. - R. J. Mathar, Jul 24 2022