cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247340 Numbers n such that each prime divisor of the semiprime n^2+1 is also a divisor of a^2+1 and b^2+1 respectively for some a, b < n.

Original entry on oeis.org

3, 8, 30, 46, 50, 76, 100, 144, 254, 266, 274, 286, 334, 380, 456, 494, 504, 516, 520, 526, 566, 664, 670, 726, 756, 810, 836, 844, 874, 1040, 1064, 1086, 1130, 1164, 1216, 1250, 1300, 1476, 1714, 1740, 1800, 1826, 1834, 1946, 1950, 2014, 2194, 2200, 2220, 2324
Offset: 1

Views

Author

Michel Lagneau, Sep 14 2014

Keywords

Comments

Or numbers n such that n^2+1 = p*q, p and q primes => p | a^2+1 and q | b^2+1 for some a,b < n.
Subsequence of A085722 and except the first term, a(n) is even.
The squares of the sequence are 100, 144, 3364, 6084, 7396, 10404, 24964, 45796, 47524, 68644, 71824, 93636,...
Observation : a(n) = p*q => there exists a and b such that a^2+1 = m*p and b^2+1 = m*q. (see the examples).

Examples

			3^2+1 = 2*5 => 1^1+1 = 2 and 2^2+1 = 5 ;
8^2+1 = 5*13 => 3^2+1 = 2*5 and 5^2+1 = 2*13 ;
30^2+1 = 17*53 => 13^2+1=2*5*17 and 23^2+1 = 2*5*53 ;
46^2+1 = 29*73 => 17^2+1 = 2*5*29 and 27^2+1=2*5*73 ;
50^2+1 = 41*61 => 9^2+1 = 2*41 and 11^2+1 = 2*61 ;
76^2+1 = 53*109 => 23^2+1 = 2*5*53 and 33^2+1 = 2*5*109 ;
100^2+1 = 73*137 => 27^2+1=2*5*73 and 37^2+1 = 2*5*137 ;
144^2+1 = 89*233 => 55^2+1 = 2*17*89 and 89^2+1 = 2*17*233 ;
254^2+1 = 149*433 => 105^2+1 = 2*37*149 and 179^2+1 = 2*37*433 ;
266^2+1 = 173*409 => 93^2+1 = 2*5^2*173 and 143^2+1 = 2*5^2*409.
		

Crossrefs

Programs

  • Maple
    with(numtheory):lst:={}:
    for n from 1 to 3000 do:
       x:=factorset(n^2+1):n0:=nops(x):
         for i from 1 to n0 do:
          lst:=lst union {x[i]}:
         od:
          lst1:={}:nn:=n+1:xx:=factorset(nn^2+1):nn0:=nops(xx):
            for j from 1 to nn0 do:
             lst1:=lst1 union {xx[j]}:
            od:
            if
             nn0=2
             and bigomega(nn^2+1)=2
             and {xx[1],xx[2]} intersect lst = {xx[1],xx[2]}
             then
             printf(`%d, `,n+1):
             else
            fi:
            lst:=lst union lst1:
      od: