A247340 Numbers n such that each prime divisor of the semiprime n^2+1 is also a divisor of a^2+1 and b^2+1 respectively for some a, b < n.
3, 8, 30, 46, 50, 76, 100, 144, 254, 266, 274, 286, 334, 380, 456, 494, 504, 516, 520, 526, 566, 664, 670, 726, 756, 810, 836, 844, 874, 1040, 1064, 1086, 1130, 1164, 1216, 1250, 1300, 1476, 1714, 1740, 1800, 1826, 1834, 1946, 1950, 2014, 2194, 2200, 2220, 2324
Offset: 1
Keywords
Examples
3^2+1 = 2*5 => 1^1+1 = 2 and 2^2+1 = 5 ; 8^2+1 = 5*13 => 3^2+1 = 2*5 and 5^2+1 = 2*13 ; 30^2+1 = 17*53 => 13^2+1=2*5*17 and 23^2+1 = 2*5*53 ; 46^2+1 = 29*73 => 17^2+1 = 2*5*29 and 27^2+1=2*5*73 ; 50^2+1 = 41*61 => 9^2+1 = 2*41 and 11^2+1 = 2*61 ; 76^2+1 = 53*109 => 23^2+1 = 2*5*53 and 33^2+1 = 2*5*109 ; 100^2+1 = 73*137 => 27^2+1=2*5*73 and 37^2+1 = 2*5*137 ; 144^2+1 = 89*233 => 55^2+1 = 2*17*89 and 89^2+1 = 2*17*233 ; 254^2+1 = 149*433 => 105^2+1 = 2*37*149 and 179^2+1 = 2*37*433 ; 266^2+1 = 173*409 => 93^2+1 = 2*5^2*173 and 143^2+1 = 2*5^2*409.
Links
- Michel Lagneau, Table of n, a(n) for n = 1..1000
Programs
-
Maple
with(numtheory):lst:={}: for n from 1 to 3000 do: x:=factorset(n^2+1):n0:=nops(x): for i from 1 to n0 do: lst:=lst union {x[i]}: od: lst1:={}:nn:=n+1:xx:=factorset(nn^2+1):nn0:=nops(xx): for j from 1 to nn0 do: lst1:=lst1 union {xx[j]}: od: if nn0=2 and bigomega(nn^2+1)=2 and {xx[1],xx[2]} intersect lst = {xx[1],xx[2]} then printf(`%d, `,n+1): else fi: lst:=lst union lst1: od:
Comments