cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247375 Numbers m such that floor(m/2) is a square.

Original entry on oeis.org

0, 1, 2, 3, 8, 9, 18, 19, 32, 33, 50, 51, 72, 73, 98, 99, 128, 129, 162, 163, 200, 201, 242, 243, 288, 289, 338, 339, 392, 393, 450, 451, 512, 513, 578, 579, 648, 649, 722, 723, 800, 801, 882, 883, 968, 969, 1058, 1059, 1152, 1153, 1250, 1251, 1352, 1353
Offset: 0

Views

Author

Bruno Berselli, Sep 15 2014

Keywords

Comments

Union of A001105 and A058331.
Squares of the sequence are listed in A055792.

Crossrefs

Cf. A130404 (numbers m such that floor(m/2) is a triangular number).

Programs

  • Magma
    [n: n in [0..1400] | IsSquare(Floor(n div 2))];
    
  • Mathematica
    Select[Range[0, 1400], IntegerQ[Sqrt[Floor[#/2]]] &]
    LinearRecurrence[{1,2,-2,-1,1},{0,1,2,3,8},70] (* Harvey P. Dale, Oct 21 2021 *)
  • Sage
    [n for n in [0..1400] if is_square(floor(n/2))]

Formula

G.f.: x*( 1 + x - x^2 + 3*x^3 ) / ( (1 - x)^3*(1 + x)^2 ).
a(n) = 1 + ( 2*n*(n-1) + (2*n-3)*(-1)^n - 1 )/4.
a(n+1) = 1 + A213037(n).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n >= 5. - Wesley Ivan Hurt, Dec 18 2020
Sum_{n>=1} 1/a(n) = Pi^2/12 + coth(Pi/sqrt(2))*Pi/(2*sqrt(2)) + 1/2. - Amiram Eldar, Sep 24 2022