cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A247511 Number of preprimes of the third kind (A247394) with the smallest prime divisor equals prime(n).

Original entry on oeis.org

12, 12, 3, 4, 2, 3, 4, 1, 4, 1, 1, 2, 3, 4, 1, 4, 2, 1, 2, 2, 4, 5, 0, 0, 1, 0, 0, 5, 3, 2, 2, 5, 1, 2, 2, 2, 2, 2, 1, 4, 0, 1, 0, 4, 6, 2, 0, 2, 2, 1, 4, 2, 3, 3, 1, 2, 1, 1, 2, 5, 1, 1, 0, 4, 2, 4, 1, 1, 1, 3, 2, 2, 1, 2, 2, 1, 2, 3, 1, 3, 0, 2, 1, 3, 3, 1
Offset: 1

Views

Author

Vladimir Shevelev, Sep 18 2014

Keywords

Crossrefs

Extensions

More terms from Peter J. C. Moses, Sep 18 2014

A247509 Number of preprimes (A156759, n>1) such that the smallest prime divisor equals prime(n).

Original entry on oeis.org

3, 3, 2, 4, 2, 3, 2, 2, 3, 2, 4, 3, 2, 2, 3, 3, 2, 4, 3, 2, 3, 2, 2, 4, 3, 2, 3, 2, 2, 5, 2, 3, 2, 4, 2, 3, 3, 2, 3, 3, 2, 5, 2, 3, 2, 3, 5, 3, 2, 2, 3, 2, 3, 3, 3, 3, 2, 4, 3, 2, 2, 5, 3, 2, 2, 3, 2, 4, 2, 2, 2, 3, 3, 3, 2, 2, 3, 2, 2, 3, 2, 4, 2, 3, 2, 2, 4
Offset: 1

Views

Author

Vladimir Shevelev, Sep 18 2014

Keywords

Examples

			For n=2, using the formula, we have a(2)=pi(25/3)-1=3.
		

Crossrefs

Programs

  • Mathematica
    a[1] = 3;a[n_] := PrimePi[Prime[n + 1]^2 / Prime[n]] - n + 1; Table[a[n], {n, 1, 87}] (* Indranil Ghosh, Mar 09 2017 *)
  • PARI
    for (n=1, 87, print1(if(n==1, 3, primepi(prime(n + 1)^2 / prime(n)) - n + 1),", ")) \\ Indranil Ghosh, Mar 09 2017

Formula

For n>1, a(n) = pi(prime(n+1)^2/prime(n))-n +1, where pi(x) is the prime counting function (cf. A000720). - Vladimir Shevelev, Sep 28 2014

Extensions

More terms from Peter J. C. Moses, Sep 18 2014

A247395 The smallest numbers of every class in a classification of positive numbers (see comment).

Original entry on oeis.org

1, 2, 4, 10, 26, 50, 122, 170, 290, 362, 530, 842, 962, 1370, 1682, 1850, 2210, 2810, 3482, 3722, 4490, 5042, 5330, 6242, 6890, 7922, 9410, 10202, 10610, 11450, 11882, 12770, 16130, 17162, 18770, 19322, 22202, 22802, 24650, 26570, 27890, 29930, 32042, 32762
Offset: 0

Views

Author

Vladimir Shevelev, Sep 16 2014

Keywords

Comments

Consider a classification of the positive numbers with classes {1}, A000040 (primes), A156759 (n>=2) (preprimes, or preprimes of the first kind), A247393 (preprimes of the second kind), A247394 (preprimes of the third kind), etc.
Then a(0)=1, a(1)=2; for n>=3, a(n) is the smallest number which is a preprime of the (n-1)st kind.

Crossrefs

Programs

Formula

For n>=3, a(n) = (prime(n-1))^2 + 1.

Extensions

More terms from Peter J. C. Moses, Sep 16 2014

A247396 Number of even numbers in classes of classification of the positive numbers defined in comment in A247395.

Original entry on oeis.org

0, 1, 3, 8, 12, 36, 24, 60, 36, 84, 156, 60, 204, 156, 84, 180, 300, 336, 120, 384, 276, 144, 456, 324, 516, 744, 396, 204, 420, 216, 444, 1680, 516, 804, 276, 1440, 300, 924, 960, 660, 1020, 1056, 360, 1860, 384, 780, 396, 2460, 2604, 900, 456, 924, 1416, 480
Offset: 0

Views

Author

Vladimir Shevelev, Sep 16 2014

Keywords

Comments

In the classification every class contains no more than a finite number of numbers with a given least prime divisor.

Examples

			a(6) = (prime(6)^2 - prime(5)^2)/2 = (13^2 - 11^2)/2 = 24. - _Indranil Ghosh_, Mar 08 2017
		

Crossrefs

Programs

  • Maple
    A247396:=n->(ithprime(n)^2 - ithprime(n-1)^2)/2: 0,1,3,seq(A247396(n), n=3..100); # Wesley Ivan Hurt, Apr 18 2017
  • Mathematica
    a[0] = 0; a[1] = 1; a[2] = 3; a[n_] := (Prime[n]^2 - Prime[n - 1]^2) / 2; Table[a[n], {n, 0, 53}] (* Indranil Ghosh, Mar 08 2017 *)
  • PARI
    for(n=0, 53, print1(if(n>2, (prime(n)^2 - prime(n - 1)^2)/2, if(n<2, n, 3)),", ")) \\ Indranil Ghosh, Mar 08 2017

Formula

For n>=3, a(n) = (prime(n)^2 - prime(n-1)^2)/2.

Extensions

More terms from Peter J. C. Moses, Sep 17 2014

A247510 Number of preprimes of the second kind (A247393) with the smallest prime divisor equals prime(n).

Original entry on oeis.org

8, 4, 5, 2, 3, 1, 3, 5, 2, 4, 2, 1, 2, 3, 4, 1, 3, 1, 1, 2, 1, 2, 6, 3, 2, 3, 1, 1, 4, 2, 2, 0, 3, 1, 2, 2, 1, 3, 2, 0, 4, 0, 2, 0, 2, 5, 2, 1, 2, 2, 0, 3, 3, 2, 3, 1, 3, 0, 0, 1, 5, 0, 1, 1, 4, 3, 4, 1, 2, 2, 3, 2, 2, 1, 2, 3, 1, 3, 4, 2, 4, 1, 2, 1, 2, 4, 1
Offset: 1

Views

Author

Vladimir Shevelev, Sep 18 2014

Keywords

Crossrefs

Extensions

More terms from Peter J. C. Moses, Sep 18 2014

A247606 Number of non-semiprimes among "preprimes" of the n-th kind (defined in comment in A247395).

Original entry on oeis.org

1, 7, 15, 36, 31, 62, 59, 111, 161, 113, 224, 175, 155, 258, 370, 358, 240, 436, 346, 297, 557, 504, 691, 806, 477, 367, 554, 489, 938, 1743, 786, 959, 725, 1526, 669, 1215, 1207, 1022, 1359, 1286, 958, 1947, 773, 1206, 1328, 3078, 2740, 1165, 915, 1459, 1787
Offset: 1

Views

Author

Vladimir Shevelev, Sep 22 2014

Keywords

Comments

One can prove that non-semiprimes we can find among preprimes of the n-th kind only with the smallest prime divisor 2,3,...,prime(n), where n=1 corresponds to A156759, n=2 corresponds to A247393, n=3 corresponds to A247394, etc. For example, for n=1, only among even numbers of A156759; for n=2 - only among even numbers and numbers with the smallest prime divisor 3 of A247393, etc. Thus, for every n>=1, among preprimes of the n-th kind almost all numbers are semiprimes.

Crossrefs

Extensions

More terms from Peter J. C. Moses, Sep 22 2014

A247834 Maximal non-semiprime number which is a "preprime" of the n-th kind (defined in comment in A247395).

Original entry on oeis.org

8, 45, 125, 343, 325, 833, 1331, 1573, 2197, 2057, 3211, 3289, 4913, 4901, 6859, 6647, 8303, 10051, 10469, 11191, 12167, 15341, 16399, 17081, 18259, 22103, 24389, 26071, 29791, 27347, 31117, 35557, 36163, 36859, 39401, 42439, 50653, 50933, 52111, 56129, 56699
Offset: 1

Views

Author

Vladimir Shevelev, Sep 24 2014

Keywords

Comments

Conjecture: the sequence contains all cubes of primes, except for 3^3 (cf. A030078).
Prime(n)^3 is in the sequence iff the interval [prime(n)^(3/2), prime(n)*sqrt(prime(n+1))] contains a prime.
A simple algorithm for finding the position k=k(n) for which a(k) = prime(n)^3 is given in A247835 (see formula and example there).
Conjecture: every term has the form a(n)= p*q*r, where p<=q<=r are primes.

Crossrefs

Extensions

More terms from Peter J. C. Moses, Sep 24 2014

A247835 Indices of prime(n)^3 in A247834, or a(n)=0 if prime(n)^3 is not in A247834.

Original entry on oeis.org

1, 0, 3, 4, 7, 9, 13, 15, 21, 27, 29, 37, 43, 47, 52, 61, 71, 74, 83, 89, 94, 105, 111, 123, 138, 145, 149, 158, 161, 168, 196, 208, 220, 226, 246, 248, 261, 276, 287, 299, 316, 319, 340, 345, 358, 364, 392, 422, 432, 436, 447, 464, 470, 496, 512, 530, 544, 549
Offset: 1

Views

Author

Vladimir Shevelev, Sep 24 2014

Keywords

Comments

Conjecture: all a(n)>0, except for n=2.

Examples

			Using the formula, let us find the position in A247834, in which should be 17^3, if 17^3 belongs to A247834. Since 17 = prime(7), then we have a(7) = pi(17^(3/2)) - 6 = pi(70) - 6 = 13. Indeed, A247834(13) = 4913 = 17^3.
		

Crossrefs

Programs

  • PARI
    a(n) = my(p=prime(n)); if(nextprime(ceil(p*sqrt(p))) > p*sqrt(prime(n+1)), 0, primepi(prime(n)^(3/2)) - n + 1); \\ Jinyuan Wang, Feb 17 2021

Formula

If prime(n)^3 is in A247834, then a(n) = pi(prime(n)^(3/2)) - n + 1, where pi(x) is the prime counting function (A000720).

Extensions

More terms from Jinyuan Wang, Feb 17 2021

A247977 If n = 1 or prime, then a(n) = 0; otherwise, if n is a preprime of k-th kind, then a(n) = k.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 1, 2, 0, 2, 0, 2, 1, 2, 0, 2, 0, 2, 1, 2, 0, 2, 1, 3, 2, 3, 0, 3, 0, 3, 2, 3, 1, 3, 0, 3, 2, 3, 0, 3, 0, 3, 2, 3, 0, 3, 1, 4, 3, 4, 0, 4, 2, 4, 3, 4, 0, 4, 0, 4, 3, 4, 2, 4, 0, 4, 3, 4, 0, 4, 0, 4, 3, 4, 1, 4, 0, 4, 3, 4, 0, 4, 2, 4, 3, 4, 0, 4, 1, 4, 3, 4, 2, 4, 0, 4, 3, 4, 0, 4, 0, 4, 3, 4, 0, 4, 0, 4, 3, 4, 0, 4, 2, 4, 3, 4, 1, 4, 1, 5, 4, 5, 3
Offset: 1

Views

Author

Vladimir Shevelev, Sep 28 2014

Keywords

Comments

Preprimes of k-th kind are defined in comment in A247395.

Examples

			If n = 15, then, by the formula, we have a(15) = 2 - 2 + 1 = 1.
		

Crossrefs

Programs

  • Mathematica
    Table[If[n==1 || PrimeQ[n], 0, PrimePi[Sqrt[n]] - PrimePi[FactorInteger[n][[1, 1]]] + 1], {n, 1, 125}] (* Indranil Ghosh, Mar 08 2017 *)
  • PARI
    for(n=1, 125, print1(if(n==1 || isprime(n), 0, primepi(sqrt(n)) - primepi(vecmin(factor(n)[, 1])) + 1),", ")) \\ Indranil Ghosh, Mar 08 2017

Formula

If n is a composite number, then a(n) = pi(sqrt(n)) - pi(lpf(n)) + 1, where pi(x) is prime counting function (cf. A000720), lpf = least prime factor (A020639).
Showing 1-9 of 9 results.