cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247478 Primes p such that (p^4 + 5)/6 is prime.

Original entry on oeis.org

7, 11, 17, 29, 53, 71, 101, 109, 127, 179, 227, 241, 281, 307, 349, 487, 587, 647, 683, 727, 829, 1009, 1061, 1109, 1289, 1487, 1511, 1523, 1567, 1621, 1627, 1709, 1847, 1987, 2017, 2027, 2087, 2099, 2297, 2311, 2393, 2437, 2447, 2521, 2531, 2617, 2729, 2887, 2909, 2969, 3167, 3221, 3301, 3319, 3329, 3347, 3413, 3527
Offset: 1

Views

Author

Zak Seidov, Jan 19 2015

Keywords

Comments

(p^4+5)/6 is an integer for all primes p>3, because then p == (1 or 5) (mod 6) as in A039704, therefore p^2 == 1 (mod 6) and finally p^4 == 1 (mod 6).

Examples

			(7^4+5)/6 = 401 prime, (11^4+5)/6 = 2441 prime.
		

Crossrefs

Cf. A118915.

Programs

  • Magma
    [p: p in PrimesInInterval(3, 4000) | IsPrime((p^4+5) div 6)]; //  Vincenzo Librandi, Jan 21 2015
  • Mathematica
    Select[Prime[Range[10^3]], PrimeQ[(#^4 + 5) / 6] &] (* Vincenzo Librandi, Jan 21 2015 *)
  • PARI
    lista(nn) = {forprime(p=4, nn, if (isprime((p^4 + 5)/6), print1(p, ", ")););} \\ Michel Marcus, Jan 20 2015