A247500 Triangle read by rows: T(n, k) = n!*binomial(n + 1, k)/(k + 1)!, 0 <= k <= n.
1, 1, 1, 2, 3, 1, 6, 12, 6, 1, 24, 60, 40, 10, 1, 120, 360, 300, 100, 15, 1, 720, 2520, 2520, 1050, 210, 21, 1, 5040, 20160, 23520, 11760, 2940, 392, 28, 1, 40320, 181440, 241920, 141120, 42336, 7056, 672, 36, 1, 362880, 1814400, 2721600, 1814400, 635040, 127008, 15120, 1080, 45, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 2, 3, 1; 6, 12, 6, 1; 24, 60, 40, 10, 1; 120, 360, 300, 100, 15, 1; 720, 2520, 2520, 1050, 210, 21, 1;
Links
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- W. Wang and T. Wang, Generalized Riordan arrays, Discrete Mathematics, Vol. 308, No. 24, 6466-6500.
Crossrefs
Programs
-
Haskell
a247500 n k = a247500_tabl !! n !! k a247500_row n = a247500_tabl !! n a247500_tabl = zipWith (zipWith div) a105278_tabl a004736_tabl -- Reinhard Zumkeller, Oct 19 2014
-
Magma
/* triangle */ [[Factorial(n)/Factorial(k) * Binomial(n+2, k+1) /(n+2): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Oct 18 2014
-
Maple
T := (n,k) -> ((k+1)*(n+1)*GAMMA(n+1)^2)/(GAMMA(k+2)^2*GAMMA(n-k+2)); A247500 := (n, k) -> (n!/(k+1)!)*binomial(n + 1, k):
-
Mathematica
Table[((k + 1) (n + 1) Gamma[n + 1]^2)/(Gamma[k + 2]^2* Gamma[n - k + 2]), {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Jun 19 2015 *)
Formula
T(n, k) = ((k+1)*(n+1)*Gamma(n+1)^2)/(Gamma(k+2)^2 *Gamma(n-k+2)). (original name)
T(n, k) = (n!/k!)*C(n+2, k+1)/(n+2).
T(n, 0) = A000142(n).
T(n, n-1) = A000217(n).
T(n+1, 1) = A001710(n+2).
Sum_{k=0..n} T(n, k) = A247499(n).
L(n+1, k+1) = T(n-1, k)*P(n) for n>=1 and 0<=k<=n; here L(n,k) denote the unsigned Lah numbers and P(n) the pronic numbers. - Peter Luschny, Oct 18 2014
T(n,k) = A105278(n+1,k+1) / (n+1-k), k=0..n. - Reinhard Zumkeller, Oct 19 2014
From Peter Bala, May 24 2023: (Start)
This is equivalent to the Stirling number identity Sum_{i = 0..n} (n+1)!/(i+1)!* binomial(n,i)*Stirling1(i+1,k) = (-1)^(n+k+1)*Stirling1(n+1,k) for n, k >= 0. (End)
Extensions
Name updated by Peter Luschny, Jan 09 2022
Comments