cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247516 Card{(x,y,z,t): 1<=x,y,z,t<=n, gcd(x,y,z,t)=1, lcm(x,y,z,t)=n}.

Original entry on oeis.org

1, 14, 14, 50, 14, 196, 14, 110, 50, 196, 14, 700, 14, 196, 196, 194, 14, 700, 14, 700, 196, 196, 14, 1540, 50, 196, 110, 700, 14, 2744, 14, 302, 196, 196, 196, 2500, 14, 196, 196, 1540, 14, 2744, 14, 700, 700, 196, 14, 2716, 50, 700, 196, 700, 14, 1540, 196
Offset: 1

Views

Author

Ovidiu Bagdasar, Sep 18 2014

Keywords

Comments

For given n and k positive integers, let L(n,k) represent the number of ordered k-tuples of positive integers, whose GCD is 1 and LCM is n. In this notation, the sequence corresponds to a(n) = L(n,4).

Crossrefs

Cf. A034444 (produced by L(n,2)), A245019, A070920.

Programs

  • Mathematica
    f[p_, e_] := 2*(6*e^2 + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 03 2023 *)
  • PARI
    a(n) = {f = factor(n); 2^omega(n)*prod(k=1, #f~, 6*f[k, 2]^2+1);} \\ Michel Marcus, Sep 18 2014

Formula

For n = p_1^{n_1} p_2^{n_2}...p_r^{n_r} one has
a(n) = Product_{i=1..r} ((n_i+1)^4 - 2*n_i^4 + (n_i-1)^4).
a(n) = 2^omega(n)*Product_{i=1..r} (6n_i^2 + 1).

Extensions

More terms from Michel Marcus, Sep 18 2014