cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A247527 Number of length n+3 0..2 arrays with some disjoint pairs in every consecutive four terms having the same sum.

Original entry on oeis.org

33, 45, 61, 81, 105, 153, 217, 297, 393, 585, 841, 1161, 1545, 2313, 3337, 4617, 6153, 9225, 13321, 18441, 24585, 36873, 53257, 73737, 98313, 147465, 213001, 294921, 393225, 589833, 851977, 1179657, 1572873, 2359305, 3407881, 4718601, 6291465
Offset: 1

Views

Author

R. H. Hardin, Sep 18 2014

Keywords

Examples

			Some solutions for n=6:
..2....1....0....2....0....2....0....0....1....1....0....0....2....1....1....2
..1....0....1....1....1....1....1....1....0....1....2....0....1....2....2....1
..0....2....0....0....0....1....1....1....2....0....1....1....1....0....2....1
..1....1....1....1....1....0....0....0....1....2....1....1....2....1....1....2
..2....1....2....2....2....2....0....0....1....1....2....2....0....1....1....0
..1....0....1....1....1....1....1....1....2....1....2....2....1....2....0....1
..2....2....2....0....2....1....1....1....0....2....1....1....1....0....2....1
..1....1....1....1....1....0....0....0....1....2....1....1....2....1....1....0
..2....1....0....0....2....2....2....0....1....1....0....0....0....1....1....2
		

Crossrefs

Column 2 of A247533.

Formula

Empirical: a(n) = a(n-1) + 4*a(n-4) - 4*a(n-5).
Empirical g.f.: x*(33 + 12*x + 16*x^2 + 20*x^3 - 108*x^4) / ((1 - x)*(1 - 2*x^2)*(1 + 2*x^2)). - Colin Barker, Nov 07 2018

A247528 Number of length n+3 0..3 arrays with some disjoint pairs in every consecutive four terms having the same sum.

Original entry on oeis.org

88, 136, 220, 364, 604, 1018, 1732, 2956, 5050, 8638, 14794, 25348, 43438, 74446, 127606, 218740, 374968, 642784, 1101898, 1888954, 3238192, 5551168, 9516268, 16313584, 27966124, 47941900, 82186078, 140890372, 241526284, 414044950
Offset: 1

Views

Author

R. H. Hardin, Sep 18 2014

Keywords

Examples

			Some solutions for n=6:
..2....0....2....0....0....2....3....3....2....2....0....1....3....3....0....2
..3....1....0....1....1....3....2....2....1....1....1....1....0....3....1....1
..1....3....1....1....3....1....2....1....2....1....0....0....0....2....1....0
..0....2....3....2....2....2....1....2....3....2....1....2....3....2....2....3
..2....2....2....2....0....0....1....1....2....2....2....1....3....1....0....2
..1....1....0....1....1....1....2....2....1....1....1....3....0....3....1....1
..1....1....1....3....1....1....0....1....2....3....2....0....0....2....1....2
..0....0....1....0....0....2....1....0....3....0....1....2....3....2....2....3
..2....2....2....2....0....2....3....1....2....2....2....1....3....3....0....0
		

Crossrefs

Column 3 of A247533.

Formula

Empirical: a(n) = 2*a(n-1) - a(n-3) + a(n-4) - a(n-5) - a(n-6) + a(n-7).
Empirical g.f.: 2*x*(44 - 20*x - 26*x^2 + 6*x^3 - 38*x^4 - 9*x^5 + 32*x^6) / ((1 - x)*(1 - x - x^2 - x^4 + x^6)). - Colin Barker, Nov 07 2018

A247529 Number of length n+3 0..4 arrays with some disjoint pairs in every consecutive four terms having the same sum.

Original entry on oeis.org

185, 317, 561, 1007, 1823, 3455, 6495, 12105, 22459, 43255, 82157, 154279, 287847, 556213, 1059205, 1992823, 3723991, 7202379, 13726813, 25838725, 48308217, 93456427, 178172281, 335410643, 627185919, 1213463869, 2313820457, 4355601755
Offset: 1

Views

Author

R. H. Hardin, Sep 18 2014

Keywords

Comments

Column 4 of A247533

Examples

			Some solutions for n=6
..0....3....0....1....4....3....4....3....1....3....0....1....3....2....4....0
..1....4....4....2....1....2....2....4....0....2....3....0....0....4....1....0
..3....0....1....0....2....1....1....1....2....4....1....2....4....1....0....2
..4....1....3....1....3....2....3....0....3....1....2....1....1....3....3....2
..2....3....2....1....4....3....2....3....1....3....2....1....3....0....2....4
..1....4....2....2....1....4....2....2....2....0....3....2....2....2....1....0
..3....2....1....2....2....1....3....1....2....2....1....0....2....1....2....2
..2....3....1....1....3....0....1....2....3....1....0....3....3....1....3....2
..4....3....0....3....4....3....4....1....1....1....4....1....1....0....4....0
		

Formula

Empirical: a(n) = a(n-1) +4*a(n-2) -4*a(n-3) +18*a(n-4) -18*a(n-5) -78*a(n-6) +78*a(n-7) -67*a(n-8) +67*a(n-9) +386*a(n-10) -386*a(n-11) +22*a(n-12) -22*a(n-13) -686*a(n-14) +686*a(n-15) +125*a(n-16) -125*a(n-17) +616*a(n-18) -616*a(n-19) -178*a(n-20) +178*a(n-21) -340*a(n-22) +340*a(n-23) +130*a(n-24) -130*a(n-25) +80*a(n-26) -80*a(n-27) -40*a(n-28) +40*a(n-29) for n>30

A247530 Number of length n+3 0..5 arrays with some disjoint pairs in every consecutive four terms having the same sum.

Original entry on oeis.org

336, 600, 1124, 2164, 4228, 8440, 16932, 34068, 68688, 139040, 281646, 570720, 1157028, 2347720, 4764538, 9669762, 19627304, 39846710, 80899690, 164248362, 333480544, 677107822, 1374849942, 2791574878, 5668275372, 11509431434
Offset: 1

Views

Author

R. H. Hardin, Sep 18 2014

Keywords

Comments

Column 5 of A247533

Examples

			Some solutions for n=6
..4....3....3....5....1....1....0....1....3....2....3....3....3....4....0....1
..2....2....2....4....4....4....4....3....2....2....4....4....2....3....2....0
..3....5....2....1....0....2....1....2....4....3....4....5....0....0....4....2
..3....4....1....2....5....3....5....0....3....1....5....4....5....1....2....1
..2....3....1....5....1....3....0....1....3....4....3....3....3....2....0....3
..4....2....0....4....4....2....4....1....4....2....2....2....2....1....2....4
..1....1....2....1....2....2....1....0....2....3....4....1....0....2....4....2
..3....4....3....0....5....3....3....2....5....5....1....4....1....1....2....1
..0....3....5....5....1....3....2....1....1....0....5....3....3....0....0....5
		

Formula

Empirical: a(n) = 2*a(n-1) +8*a(n-2) -17*a(n-3) +a(n-4) +10*a(n-5) -157*a(n-6) +279*a(n-7) +287*a(n-8) -676*a(n-9) +1052*a(n-10) -1443*a(n-11) -3411*a(n-12) +6586*a(n-13) -1985*a(n-14) +16*a(n-15) +16530*a(n-16) -27897*a(n-17) -7486*a(n-18) +26143*a(n-19) -37856*a(n-20) +52993*a(n-21) +39856*a(n-22) -98023*a(n-23) +38862*a(n-24) -20108*a(n-25) -65879*a(n-26) +144966*a(n-27) -16963*a(n-28) -66316*a(n-29) +54163*a(n-30) -75893*a(n-31) +4252*a(n-32) +70664*a(n-33) -27769*a(n-34) +2220*a(n-35) -2909*a(n-36) -15058*a(n-37) +10538*a(n-38) -826*a(n-39) +1788*a(n-40) +1646*a(n-41) -2884*a(n-42) +1344*a(n-43) -572*a(n-44) -615*a(n-45) +437*a(n-46) +140*a(n-47) +112*a(n-48) -190*a(n-49) -20*a(n-50) +78*a(n-51) +a(n-52) -24*a(n-53) +8*a(n-55) -4*a(n-56)

A247531 Number of length n+3 0..6 arrays with some disjoint pairs in every consecutive four terms having the same sum.

Original entry on oeis.org

553, 1033, 2009, 3997, 8051, 16683, 34695, 72269, 150677, 318575, 671847, 1413661, 2970293, 6314241, 13372035, 28225763, 59454011, 126633283, 268599173, 567619549, 1196758327, 2551010159, 5414437825, 11447235523, 24144688307
Offset: 1

Views

Author

R. H. Hardin, Sep 18 2014

Keywords

Comments

Column 6 of A247533

Examples

			Some solutions for n=6
..6....4....4....3....4....1....4....4....2....2....6....4....0....5....6....6
..4....6....5....3....3....2....6....3....2....0....5....3....3....1....0....1
..5....1....6....4....3....1....5....6....3....3....4....3....2....4....4....4
..3....3....5....4....2....2....5....1....1....5....5....4....1....2....2....3
..2....4....6....3....4....3....4....4....4....2....4....4....2....3....6....0
..4....6....5....5....5....0....4....3....2....6....5....3....3....5....4....1
..3....5....4....4....3....1....3....2....5....1....4....3....2....6....4....2
..3....5....3....4....4....4....3....5....3....5....3....2....1....2....2....3
..2....4....4....3....2....3....2....4....4....0....2....2....4....3....2....2
		

Formula

Empirical recurrence of order 82 (see link above)

A247532 Number of length n+3 0..7 arrays with some disjoint pairs in every consecutive four terms having the same sum.

Original entry on oeis.org

848, 1616, 3220, 6584, 13668, 29012, 62108, 133716, 288996, 627654, 1366118, 2978172, 6500008, 14206554, 31071490, 67992670, 148845278, 325994076, 714155690, 1564780972, 3429103460, 7515830880, 16474726804, 36114808462
Offset: 1

Views

Author

R. H. Hardin, Sep 18 2014

Keywords

Comments

Column 7 of A247533

Examples

			Some solutions for n=6
..6....1....2....6....4....5....5....4....0....1....2....4....3....5....1....4
..7....6....5....4....5....6....6....1....5....2....5....6....5....3....6....4
..3....4....7....5....6....2....5....5....4....1....6....5....6....4....3....5
..2....3....4....5....7....3....6....2....1....2....3....7....4....2....4....5
..6....1....2....4....4....5....5....6....0....3....4....4....7....1....5....4
..7....0....5....6....5....6....4....1....5....4....5....6....5....3....6....6
..3....4....1....5....2....2....5....5....4....3....2....5....6....4....7....5
..2....3....4....3....7....1....6....2....1....4....3....7....6....6....4....7
..6....1....2....4....4....7....7....4....0....3....6....6....7....5....5....4
		

A247534 Number of length 2+3 0..n arrays with some disjoint pairs in every consecutive four terms having the same sum.

Original entry on oeis.org

8, 45, 136, 317, 600, 1033, 1616, 2409, 3400, 4661, 6168, 8005, 10136, 12657, 15520, 18833, 22536, 26749, 31400, 36621, 42328, 48665, 55536, 63097, 71240, 80133, 89656, 99989, 111000, 122881, 135488, 149025, 163336, 178637, 194760, 211933, 229976
Offset: 1

Views

Author

R. H. Hardin, Sep 18 2014

Keywords

Examples

			Some solutions for n=6:
..4....0....4....5....6....4....3....3....0....4....3....0....6....5....3....0
..3....4....4....4....1....2....0....2....5....4....5....1....3....4....1....2
..3....6....3....2....4....3....3....4....1....5....5....3....2....6....4....0
..4....2....3....3....3....3....0....3....6....5....3....4....5....5....6....2
..4....4....4....3....6....4....3....1....2....6....3....6....0....5....3....0
		

Crossrefs

Row 2 of A247533.

Formula

Empirical: a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
Also as a cubic plus a linear quasipolynomial with period 2:
Empirical for n mod 2 = 0: a(n) = (9/2)*n^3 + (3/2)*n^2 + 1*n + 1
Empirical for n mod 2 = 1: a(n) = (9/2)*n^3 + (3/2)*n^2 - (1/2)*n + (5/2).
Empirical g.f.: x*(8 + 29*x + 38*x^2 + 32*x^3 + 2*x^4 - x^5) / ((1 - x)^4*(1 + x)^2). - Colin Barker, Nov 07 2018

A247535 Number of length 3+3 0..n arrays with some disjoint pairs in every consecutive four terms having the same sum.

Original entry on oeis.org

8, 61, 220, 561, 1124, 2009, 3220, 4901, 7016, 9737, 13000, 17025, 21688, 27245, 33572, 40929, 49140, 58553, 68924, 80613, 93400, 107641, 123056, 140113, 158440, 178509, 200012, 223393, 248260, 275209, 303748, 334453, 366920, 401689, 438264
Offset: 1

Views

Author

R. H. Hardin, Sep 18 2014

Keywords

Examples

			Some solutions for n=6:
..2....1....1....3....5....1....1....3....5....3....3....5....6....2....3....4
..2....5....4....4....5....0....3....0....4....1....2....6....4....5....2....2
..0....3....5....2....6....5....5....3....2....3....0....4....3....1....1....3
..4....3....2....3....4....6....3....6....3....5....1....5....1....4....2....3
..2....5....3....1....5....1....5....3....3....3....3....3....2....2....1....2
..6....5....6....2....5....0....3....6....2....5....4....4....0....5....0....4
		

Crossrefs

Row 3 of A247533.

Formula

Empirical: a(n) = a(n-2) + 2*a(n-3) + a(n-4) - 2*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8) + 2*a(n-9) + a(n-10) - a(n-12).
Also as a cubic plus a linear quasipolynomial with period 12:
Empirical for n mod 12 = 0: a(n) = (563/54)*n^3 - (127/18)*n^2 + 2*n + 1
Empirical for n mod 12 = 1: a(n) = (563/54)*n^3 - (127/18)*n^2 - (5/2)*n + (385/54)
Empirical for n mod 12 = 2: a(n) = (563/54)*n^3 - (127/18)*n^2 + (10/9)*n + (97/27)
Empirical for n mod 12 = 3: a(n) = (563/54)*n^3 - (127/18)*n^2 - (5/2)*n + (19/2)
Empirical for n mod 12 = 4: a(n) = (563/54)*n^3 - (127/18)*n^2 + 2*n - (37/27)
Empirical for n mod 12 = 5: a(n) = (563/54)*n^3 - (127/18)*n^2 - (61/18)*n + (761/54)
Empirical for n mod 12 = 6: a(n) = (563/54)*n^3 - (127/18)*n^2 + 2*n - 1
Empirical for n mod 12 = 7: a(n) = (563/54)*n^3 - (127/18)*n^2 - (5/2)*n + (385/54)
Empirical for n mod 12 = 8: a(n) = (563/54)*n^3 - (127/18)*n^2 + (10/9)*n + (151/27)
Empirical for n mod 12 = 9: a(n) = (563/54)*n^3 - (127/18)*n^2 - (5/2)*n + (19/2)
Empirical for n mod 12 = 10: a(n) = (563/54)*n^3 - (127/18)*n^2 + 2*n - (91/27)
Empirical for n mod 12 = 11: a(n) = (563/54)*n^3 - (127/18)*n^2 - (61/18)*n + (761/54).
Empirical g.f.: x*(8 + 61*x + 212*x^2 + 484*x^3 + 774*x^4 + 963*x^5 + 892*x^6 + 661*x^7 + 330*x^8 + 120*x^9 - x^11) / ((1 - x)^4*(1 + x)^2*(1 + x^2)*(1 + x + x^2)^2). - Colin Barker, Nov 07 2018

A247536 Number of length 4+3 0..n arrays with some disjoint pairs in every consecutive four terms having the same sum.

Original entry on oeis.org

8, 81, 364, 1007, 2164, 3997, 6584, 10219, 14852, 20847, 28108, 37095, 47564, 60087, 74428, 91101, 109760, 131243, 154956, 181677, 211024, 243709, 279136, 318445, 360676, 406933, 456648, 510683, 568172, 630613, 696744, 767859, 843244, 923955
Offset: 1

Views

Author

R. H. Hardin, Sep 18 2014

Keywords

Comments

Row 4 of A247533

Examples

			Some solutions for n=6
..2....1....3....6....3....3....2....0....4....5....5....0....2....4....5....1
..0....0....5....3....5....6....4....2....3....6....1....2....0....0....4....5
..4....3....3....0....2....2....3....4....2....3....4....1....2....3....5....0
..2....2....5....3....6....5....5....2....5....2....2....3....4....1....6....6
..2....1....3....0....3....3....4....0....4....5....5....2....2....2....5....1
..0....4....5....3....5....4....6....2....1....0....1....0....4....0....4....5
..0....5....3....0....2....2....3....4....0....3....4....1....2....3....3....2
		

Formula

Empirical: a(n) = -a(n-1) -a(n-2) +a(n-4) +2*a(n-5) +3*a(n-6) +3*a(n-7) +2*a(n-8) -2*a(n-10) -4*a(n-11) -4*a(n-12) -4*a(n-13) -2*a(n-14) +2*a(n-16) +3*a(n-17) +3*a(n-18) +2*a(n-19) +a(n-20) -a(n-22) -a(n-23) -a(n-24)
Also as a cubic plus a linear quasipolynomial with period 420, first 12 listed:
Empirical for n mod 420 = 0: a(n) = (15541/630)*n^3 - (1401/35)*n^2 + (4243/210)*n + 1
Empirical for n mod 420 = 1: a(n) = (15541/630)*n^3 - (1401/35)*n^2 + (2003/210)*n + (622/45)
Empirical for n mod 420 = 2: a(n) = (15541/630)*n^3 - (1401/35)*n^2 + (3263/210)*n + (3998/315)
Empirical for n mod 420 = 3: a(n) = (15541/630)*n^3 - (1401/35)*n^2 + (2003/210)*n + (148/5)
Empirical for n mod 420 = 4: a(n) = (15541/630)*n^3 - (1401/35)*n^2 + (4243/210)*n - (3821/315)
Empirical for n mod 420 = 5: a(n) = (15541/630)*n^3 - (1401/35)*n^2 + (341/70)*n + (3580/63)
Empirical for n mod 420 = 6: a(n) = (15541/630)*n^3 - (1401/35)*n^2 + (4243/210)*n - (404/35)
Empirical for n mod 420 = 7: a(n) = (15541/630)*n^3 - (1401/35)*n^2 + (2003/210)*n + (784/45)
Empirical for n mod 420 = 8: a(n) = (15541/630)*n^3 - (1401/35)*n^2 + (3263/210)*n + (1187/45)
Empirical for n mod 420 = 9: a(n) = (15541/630)*n^3 - (1401/35)*n^2 + (2003/210)*n + (886/35)
Empirical for n mod 420 = 10: a(n) = (15541/630)*n^3 - (1401/35)*n^2 + (4243/210)*n - (184/9)
Empirical for n mod 420 = 11: a(n) = (15541/630)*n^3 - (1401/35)*n^2 + (341/70)*n + (20294/315)

A247537 Number of length 5+3 0..n arrays with some disjoint pairs in every consecutive four terms having the same sum.

Original entry on oeis.org

8, 105, 604, 1823, 4228, 8051, 13668, 21609, 31924, 45309, 61740, 82067, 105968, 134635, 167680, 206001, 249072, 298861, 354032, 416027, 484464, 560643, 643428, 735401, 834308, 942581, 1059436, 1186239, 1321332, 1468271, 1624036, 1791277
Offset: 1

Views

Author

R. H. Hardin, Sep 18 2014

Keywords

Comments

Row 5 of A247533

Examples

			Some solutions for n=6
..3....6....4....4....3....2....5....5....4....1....3....2....5....2....5....6
..1....2....2....3....2....1....6....4....0....2....2....6....6....2....4....4
..2....1....3....4....4....5....0....6....6....5....4....3....3....1....4....5
..0....5....1....3....1....6....1....5....2....4....3....5....2....1....5....3
..1....4....0....2....5....2....5....5....4....3....3....2....5....0....3....4
..3....0....4....1....0....1....4....4....0....6....2....4....6....2....4....2
..4....1....5....0....4....5....2....4....6....5....4....3....1....3....4....3
..6....5....1....3....1....6....3....5....2....2....3....1....0....5....3....3
		

Formula

Empirical: a(n) = -3*a(n-1) -6*a(n-2) -10*a(n-3) -15*a(n-4) -19*a(n-5) -21*a(n-6) -20*a(n-7) -15*a(n-8) -5*a(n-9) +9*a(n-10) +26*a(n-11) +44*a(n-12) +60*a(n-13) +71*a(n-14) +75*a(n-15) +70*a(n-16) +55*a(n-17) +32*a(n-18) +3*a(n-19) -29*a(n-20) -60*a(n-21) -85*a(n-22) -102*a(n-23) -108*a(n-24) -102*a(n-25) -85*a(n-26) -60*a(n-27) -29*a(n-28) +3*a(n-29) +32*a(n-30) +55*a(n-31) +70*a(n-32) +75*a(n-33) +71*a(n-34) +60*a(n-35) +44*a(n-36) +26*a(n-37) +9*a(n-38) -5*a(n-39) -15*a(n-40) -20*a(n-41) -21*a(n-42) -19*a(n-43) -15*a(n-44) -10*a(n-45) -6*a(n-46) -3*a(n-47) -a(n-48)
Also as a cubic plus a linear quasipolynomial with period 27720, first 12 listed:
Empirical for n mod 27720 = 0: a(n) = (1027297/17325)*n^3 - (3502537/23100)*n^2 + (878029/6930)*n + 1
Empirical for n mod 27720 = 1: a(n) = (1027297/17325)*n^3 - (3502537/23100)*n^2 + (3587189/34650)*n - (44311/13860)
Empirical for n mod 27720 = 2: a(n) = (1027297/17325)*n^3 - (3502537/23100)*n^2 + (420821/3850)*n + (45853/2475)
Empirical for n mod 27720 = 3: a(n) = (1027297/17325)*n^3 - (3502537/23100)*n^2 + (716329/6930)*n + (17263/300)
Empirical for n mod 27720 = 4: a(n) = (1027297/17325)*n^3 - (3502537/23100)*n^2 + (4379057/34650)*n - (891203/17325)
Empirical for n mod 27720 = 5: a(n) = (1027297/17325)*n^3 - (3502537/23100)*n^2 + (198223/2310)*n + (44759/252)
Empirical for n mod 27720 = 6: a(n) = (1027297/17325)*n^3 - (3502537/23100)*n^2 + (4395689/34650)*n - (68743/1155)
Empirical for n mod 27720 = 7: a(n) = (1027297/17325)*n^3 - (3502537/23100)*n^2 + (3587189/34650)*n + (341887/9900)
Empirical for n mod 27720 = 8: a(n) = (1027297/17325)*n^3 - (3502537/23100)*n^2 + (84041/770)*n + (1394257/17325)
Empirical for n mod 27720 = 9: a(n) = (1027297/17325)*n^3 - (3502537/23100)*n^2 + (3570557/34650)*n + (56851/1100)
Empirical for n mod 27720 = 10: a(n) = (1027297/17325)*n^3 - (3502537/23100)*n^2 + (878029/6930)*n - (9023/99)
Empirical for n mod 27720 = 11: a(n) = (1027297/17325)*n^3 - (3502537/23100)*n^2 + (992963/11550)*n + (275239/1260)
Showing 1-10 of 12 results. Next