cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247541 a(n) = 7*n^2 + 1.

Original entry on oeis.org

1, 8, 29, 64, 113, 176, 253, 344, 449, 568, 701, 848, 1009, 1184, 1373, 1576, 1793, 2024, 2269, 2528, 2801, 3088, 3389, 3704, 4033, 4376, 4733, 5104, 5489, 5888, 6301, 6728, 7169, 7624, 8093, 8576, 9073, 9584, 10109, 10648, 11201, 11768, 12349, 12944, 13553
Offset: 0

Views

Author

Karl V. Keller, Jr., Sep 18 2014

Keywords

Crossrefs

Cf. A201602 (primes of the form 7n^2 + 1).

Programs

  • Magma
    [7*n^2+1: n in [0..50]]; // Vincenzo Librandi, Sep 19 2014
  • Mathematica
    a247541[n_Integer] := 7 n^2 + 1; a247541 /@ Range[0, 120] (* Michael De Vlieger, Sep 18 2014 *)
    CoefficientList[Series[(1 + 5 x + 8 x^2)/(1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Sep 19 2014 *)
    LinearRecurrence[{3,-3,1},{1,8,29},50] (* Harvey P. Dale, Jun 09 2015 *)
  • PARI
    vector(100,n,7*(n-1)^2+1) \\ Derek Orr, Sep 18 2014
    
  • Python
    for n in range (0,500) : print (7*n**2+1)
    

Formula

G.f.: (1 + 5*x + 8*x^2)/(1 - x)^3. - Vincenzo Librandi, Sep 19 2014
From Amiram Eldar, Jul 15 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + (Pi/sqrt(7))*coth(Pi/sqrt(7)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/sqrt(7))*csch(Pi/sqrt(7)))/2. (End)
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/sqrt(7))*sinh(sqrt(2/7)*Pi).
Product_{n>=1} (1 - 1/a(n)) = (Pi/sqrt(7))*csch(Pi/sqrt(7)). (End)
E.g.f.: exp(x)*(1 + 7*x + 7*x^2). - Stefano Spezia, Feb 05 2021