A249413
Primes in the hexanacci numbers sequence A000383.
Original entry on oeis.org
11, 41, 72426721, 143664401, 565262081, 4160105226881, 253399862985121, 997027328131841, 212479323351825962211841, 188939838859312612896128881921, 22828424707602602744356458636161, 661045104283639247572028952777478721
Offset: 1
Cf.
A001590,
A001631,
A100683,
A231574,
A231575,
A232543,
A214899,
A020992,
A233554,
A214727,
A234696,
A141523,
A235862,
A214825,
A235873,
A001630,
A241660,
A247027,
A000288,
A247561,
A000322,
A248920,
A000383,
A247192.
-
a={1,1,1,1,1,1}; For[n=6, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[5]]=sum]
A253333
Primes in the 7th-order Fibonacci numbers A060455.
Original entry on oeis.org
7, 13, 97, 193, 769, 1531, 3049, 6073, 12097, 24097, 95617, 379399, 2998753, 187339729, 373174033, 2949551617, 184265983633, 731152932481, 88025699967469825543, 175344042716296888429, 4979552865927484193343796114081304399449
Offset: 1
Cf.
A001590,
A001631,
A100683,
A231574,
A231575,
A232543,
A214899,
A020992,
A233554,
A214727,
A234696,
A141523,
A235862,
A214825,
A235873,
A001630,
A241660,
A247027,
A000288,
A247561,
A000322,
A248920,
A000383,
A247192,
A060455,
A253318.
-
a={1,1,1,1,1,1,1}; step=7; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,sum]]; a=RotateLeft[a]; a[[7]]=sum]; lst
With[{c=PadRight[{},7,1]},Select[LinearRecurrence[c,c,150],PrimeQ]] (* Harvey P. Dale, May 08 2015 *)
-
lista(nn) = {gf = ( -1+x^2+2*x^3+3*x^4+4*x^5+5*x^6 ) / ( -1+x+x^2+x^3+x^4+x^5+x^6+x^7 ); for (n=0, nn, if (isprime(p=polcoeff(gf+O(x^(n+1)), n)), print1(p, ", ")););} \\ Michel Marcus, Jan 11 2015
A254413
Primes in the 8th-order Fibonacci numbers A123526.
Original entry on oeis.org
29, 113, 449, 226241, 14307889, 113783041, 1820091580429249, 233322881089059894782836851617, 29566627412209231076314948970028097, 59243719929958343565697204780596496129, 7507351981539044730893385057192143660843521
Offset: 1
Cf.
A001590,
A001631,
A100683,
A231574,
A231575,
A232543,
A214899,
A020992,
A233554,
A214727,
A234696,
A141523,
A235862,
A214825,
A235873,
A001630,
A241660,
A247027,
A000288,
A247561,
A000322,
A248920,
A000383,
A247192,
A060455,
A253318,
A079262,
A253705,
A123526,
A254412.
-
a={1,1,1,1,1,1,1,1}; step=8; lst={}; For[n=step+1,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,sum]]; a=RotateLeft[a]; a[[step]]=sum]; lst
Select[With[{lr=PadRight[{},8,1]},LinearRecurrence[lr,lr,200]],PrimeQ] (* Harvey P. Dale, Dec 03 2022 *)
A248921
Primes in the pentanacci numbers sequence A000322.
Original entry on oeis.org
5, 17, 977, 28697, 56417, 1428864769, 2809074173, 21344178433, 626815657409, 18407729752001, 2317881588988297338942875602391948125494800020122167809, 136507010958920295813169620935932629930648432530102206331972221346174230852977164801
Offset: 1
Cf.
A001590,
A001631,
A100683,
A231574,
A231575,
A232543,
A214899,
A020992,
A233554,
A214727,
A234696,
A141523,
A235862,
A214825,
A235873,
A001630,
A241660,
A247027,
A000288,
A247561,
A000322,
A248920.
-
a={1,1,1,1,1}; For[n=5, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[5]]=sum]
Select[With[{c={1,1,1,1,1}},LinearRecurrence[c,c,300]],PrimeQ] (* Harvey P. Dale, Nov 30 2019 *)
A253706
Primes in the 8th-order Fibonacci numbers A079262.
Original entry on oeis.org
2, 509, 128257, 133294824621464999938178340471931877, 4596852049500861351052672455121859744010232939954169259264638023409631672658340253083284317818242062413
Offset: 1
Cf.
A001590,
A001631,
A100683,
A231574,
A231575,
A232543,
A214899,
A020992,
A233554,
A214727,
A234696,
A141523,
A235862,
A214825,
A235873,
A001630,
A241660,
A247027,
A000288,
A247561,
A000322,
A248920,
A000383,
A247192,
A060455,
A253318,
A079262,
A253705.
-
a={0,0,0,0,0,0,0,1}; step=8; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,sum]]; a=RotateLeft[a]; a[[step]]=sum]; lst
-
lista(nn) = {gf = x^7/(1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8); for (n=0, nn, if (isprime(p=polcoeff(gf+O(x^(n+1)), n)), print1(p, ", ")););} \\ Michel Marcus, Jan 12 2015
A247946
Primes in the tetranacci sequence A000288.
Original entry on oeis.org
7, 13, 181, 349, 673, 1297, 34513, 90799453, 175021573, 4657290577, 17304140641, 1131469145856472270556751793, 1544310310927991136025089626209, 1442398599584422734286432395814518441223501, 18598135820391234761502881488353916158281807617671450769
Offset: 1
Cf.
A001590,
A001631,
A100683,
A231574,
A231575,
A232543,
A214899,
A020992,
A233554,
A214727,
A234696,
A141523,
A235862,
A214825,
A235873,
A001630,
A241660,
A247027,
A000288,
A247561.
-
a={1,1,1,1}; For[n=4, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[4]]=sum]
Select[LinearRecurrence[{1,1,1,1},{1,1,1,1},300],PrimeQ] (* Harvey P. Dale, Jan 15 2015 *)
Showing 1-6 of 6 results.
Comments