A247588 Number of integer-sided acute triangles with largest side n.
1, 2, 3, 5, 6, 8, 11, 13, 15, 17, 21, 25, 27, 31, 34, 39, 43, 48, 52, 56, 63, 67, 73, 80, 84, 90, 96, 104, 111, 117, 126, 132, 140, 147, 154, 165, 172, 183, 189, 198, 210, 219, 229, 237, 247, 260, 270, 282, 292, 302
Offset: 1
Keywords
Examples
a(3) = 3 because there are 3 integer-sided acute triangles with largest side 3: (1,3,3); (2,3,3); (3,3,3).
Links
- Vladimir Letsko, Mathematical Marathon, problem 192 (in Russian).
Programs
-
Maple
tr_a:=proc(n) local a,b,t,d;t:=0: for a to n do for b from max(a,n+1-a) to n do d:=a^2+b^2-n^2: if d>0 then t:=t+1 fi od od; t; end;
-
Mathematica
a[ n_] := Length @ FindInstance[ n >= b >= a >= 1 && n < b + a && n^2 < b^2 + a^2, {a, b}, Integers, 10^9]; (* Michael Somos, May 24 2015 *)
-
PARI
a(n) = sum(j=0, n*(1 - sqrt(2)/2), n - j - floor(sqrt(2*j*n - j^2))); \\ Michel Marcus, Oct 07 2014
-
PARI
{a(n) = sum(j=0, n - sqrtint(n*n\2) - 1, n - j - sqrtint(2*j*n - j*j))}; /* Michael Somos, May 24 2015 */
Formula
a(n) = Sum_{j=0..floor(n*(1 - sqrt(2)/2))} (n - j - floor(sqrt(2*j*n - j^2))). - Anton Nikonov, Oct 06 2014
a(n) = (1/8)*(-4*ceiling((n - 1)/sqrt(2)) + 4*n^2 - A000328(n) + 1), n > 1. - Mats Granvik, May 23 2015