cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247588 Number of integer-sided acute triangles with largest side n.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 11, 13, 15, 17, 21, 25, 27, 31, 34, 39, 43, 48, 52, 56, 63, 67, 73, 80, 84, 90, 96, 104, 111, 117, 126, 132, 140, 147, 154, 165, 172, 183, 189, 198, 210, 219, 229, 237, 247, 260, 270, 282, 292, 302
Offset: 1

Views

Author

Vladimir Letsko, Sep 20 2014

Keywords

Examples

			a(3) = 3 because there are 3 integer-sided acute triangles with largest side 3: (1,3,3); (2,3,3); (3,3,3).
		

Crossrefs

Programs

  • Maple
    tr_a:=proc(n) local a,b,t,d;t:=0:
    for a to n do
    for b from max(a,n+1-a) to n do
    d:=a^2+b^2-n^2:
    if d>0 then t:=t+1 fi
    od od;
    t; end;
  • Mathematica
    a[ n_] := Length @ FindInstance[ n >= b >= a >= 1 && n < b + a && n^2 < b^2 + a^2, {a, b}, Integers, 10^9]; (* Michael Somos, May 24 2015 *)
  • PARI
    a(n) = sum(j=0, n*(1 - sqrt(2)/2), n - j - floor(sqrt(2*j*n - j^2))); \\ Michel Marcus, Oct 07 2014
    
  • PARI
    {a(n) = sum(j=0, n - sqrtint(n*n\2) - 1, n - j - sqrtint(2*j*n - j*j))}; /* Michael Somos, May 24 2015 */

Formula

a(n) = Sum_{j=0..floor(n*(1 - sqrt(2)/2))} (n - j - floor(sqrt(2*j*n - j^2))). - Anton Nikonov, Oct 06 2014
a(n) = (1/8)*(-4*ceiling((n - 1)/sqrt(2)) + 4*n^2 - A000328(n) + 1), n > 1. - Mats Granvik, May 23 2015