cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247610 a(n) = Sum_{k=0..5} binomial(10,k)*binomial(n,k).

Original entry on oeis.org

1, 11, 66, 286, 1001, 3003, 7798, 17858, 36873, 70003, 124130, 208110, 333025, 512435, 762630, 1102882, 1555697, 2147067, 2906722, 3868382, 5070009, 6554059, 8367734, 10563234, 13198009, 16335011, 20042946, 24396526, 29476721, 35371011, 42173638, 49985858
Offset: 0

Views

Author

Vincenzo Librandi, Sep 22 2014

Keywords

Crossrefs

Programs

  • Magma
    [(20+508*n-925*n^2+820*n^3-245*n^4+42*n^5)/20: n in [0..40]];
    
  • Magma
    I:=[1,11,66,286,1001,3003]; [n le 6 select I[n] else 6*Self(n-1)-15*Self(n-2)+20*Self(n-3)-15*Self(n-4)+6*Self(n-5)-Self(n-6): n in [1..40]];
    
  • Mathematica
    Table[(20 + 508 n - 925 n^2 + 820 n^3 - 245 n^4 + 42 n^5)/20, {n, 0, 40}] (* or *) CoefficientList[Series[(1 + 5 x + 15 x^2 + 35 x^3 + 70 x^4 + 126 x^5)/(1 - x)^6, {x, 0, 40}], x]
    LinearRecurrence[{6,-15,20,-15,6,-1},{1,11,66,286,1001,3003},40] (* Harvey P. Dale, Apr 20 2022 *)
  • Sage
    m=5; [sum((binomial(2*m,k)*binomial(n,k)) for k in (0..m)) for n in (0..40)] # Bruno Berselli, Sep 22 2014

Formula

G.f.: (1 + 5*x + 15*x^2 + 35*x^3 + 70*x^4 + 126*x^5) / (1-x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
a(n) = (20 + 508*n - 925*n^2 + 820*n^3 - 245*n^4 + 42*n^5)/20.