A247613
a(n) = Sum_{k=0..8} binomial(16,k)*binomial(n,k).
Original entry on oeis.org
1, 17, 153, 969, 4845, 20349, 74613, 245157, 735471, 2031535, 5189327, 12316239, 27322191, 57029103, 112740255, 212383935, 383358645, 666220005, 1119362365, 1824861005, 2895653673, 4484253081, 6793194849, 10087438257, 14708950035, 21093714291
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- C. Krattenthaler, Advanced determinant calculus Séminaire Lotharingien de Combinatoire, B42q (1999), 67 pp, (see p. 54).
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
-
m:=8; [&+[Binomial(2*m,k)*Binomial(n,k): k in [0..m]]: n in [0..40]];
-
[(20160-15076944*n+40499716*n^2-42247940*n^3 +23174515*n^4-7234136*n^5+1335334*n^6-134420*n^7 +6435*n^8)/20160: n in [0..40]];
-
Table[(20160 - 15076944 n + 40499716 n^2 - 42247940 n^3 + 23174515 n^4 - 7234136 n^5 + 1335334 n^6 - 134420 n^7 + 6435 n^8)/20160, {n, 0, 40}] (* or *) CoefficientList[Series[(1 + 8 x + 36 x^2 + 120 x^3 + 330 x^4 + 792 x^5 + 1716 x^6 + 3432 x^7 + 6435 x^8)/(1 - x)^9, {x, 0, 40}], x]
Table[Sum[Binomial[16,k]Binomial[n,k],{k,0,8}],{n,0,30}] (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,17,153,969,4845,20349,74613,245157,735471},40] (* Harvey P. Dale, Mar 25 2015 *)
-
m=8; [sum((binomial(2*m,k)*binomial(n,k)) for k in (0..m)) for n in (0..40)] # Bruno Berselli, Sep 23 2014
A247614
a(n) = Sum_{k=0..9} binomial(18,k)*binomial(n,k).
Original entry on oeis.org
1, 19, 190, 1330, 7315, 33649, 134596, 480700, 1562275, 4686825, 13079352, 34084128, 83204745, 191006115, 414237570, 852920310, 1675575165, 3155247975, 5719519850, 10018268150, 17013571223, 28096825757, 45238870040, 71179679480, 109665022415
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- C. Krattenthaler, Advanced determinant calculus Séminaire Lotharingien de Combinatoire, B42q (1999), 67 pp, (see p. 54).
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
-
m:=9; [&+[Binomial(2*m,k)*Binomial(n,k): k in [0..m]]: n in [0..40]];
-
[(181440+462101904*n-1283316876*n^2+1433031524*n^3 -853620201*n^4+303063726*n^5-66245634*n^6 +8905416*n^7-678249*n^8+24310*n^9)/181440: n in [0..40]];
-
Table[(181440 + 462101904 n - 1283316876 n^2 + 1433031524 n^3 - 853620201 n^4 + 303063726 n^5 - 66245634 n^6 + 8905416 n^7 - 678249 n^8 + 24310 n^9)/181440, {n, 0, 40}] (* or *) CoefficientList[Series[(1 + 9 x + 45 x^2 + 165 x^3 + 495 x^4 + 1287 x^5 + 3003 x^6 + 6435 x^7 + 12870 x^8 + 24310 x^9)/(1 - x)^10, {x, 0, 40}], x]
LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{1,19,190,1330,7315,33649,134596,480700,1562275,4686825},30] (* Harvey P. Dale, Jul 19 2019 *)
-
m=9; [sum((binomial(2*m,k)*binomial(n,k)) for k in (0..m)) for n in (0..40)] # Bruno Berselli, Sep 23 2014
A247615
a(n) = Sum_{k=0..10} binomial(20,k)*binomial(n,k).
Original entry on oeis.org
1, 21, 231, 1771, 10626, 53130, 230230, 888030, 3108105, 10015005, 30045015, 84504355, 223651350, 558350430, 1318250890, 2952624906, 6296642121, 12834146941, 25098124271, 47262174531, 85990654178, 151631858378, 259857912678, 433877085278, 707369215553
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- C. Krattenthaler, Advanced determinant calculus Séminaire Lotharingien de Combinatoire, B42q (1999), 67 pp, (see p. 54).
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
-
m:=10; [&+[Binomial(2*m,k)*Binomial(n,k): k in [0..m]]: n in [0..40]];
-
I:=[1, 21, 231, 1771, 10626, 53130, 230230, 888030, 3108105, 10015005, 30045015]; [n le 11 select I[n] else 11*Self(n-1) -55*Self(n-2) +165*Self(n-3) -330*Self(n-4) +462*Self(n-5) -462*Self(n-6) +330*Self(n-7) -165*Self(n-8) +55*Self(n-9) -11*Self(n-10) +Self(n-11): n in [1..40]];
-
CoefficientList[Series[(1 + 10 x + 55 x^2 + 220 x^3 + 715 x^4 + 2002 x^5 + 5005 x^6 + 11440 x^7 + 24310 x^8 + 48620 x^9 + 92378 x^10)/(1 - x)^11, {x, 0, 40}], x]
Table[Sum[Binomial[20,k]Binomial[n,k],{k,0,10}],{n,0,30}] (* or *) LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{1,21,231,1771,10626,53130,230230,888030,3108105,10015005,30045015},30] (* Harvey P. Dale, May 19 2015 *)
-
m=10; [sum((binomial(2*m,k)*binomial(n,k)) for k in (0..m)) for n in (0..40)] # Bruno Berselli, Sep 23 2014
Showing 1-3 of 3 results.