cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A247646 Irregular triangle read by rows, arising in enumeration of lattice paths in strips.

Original entry on oeis.org

1, 1, 3, 3, 1, 1, 3, 9, 5, 7, 11, 1, 3, 9, 15, 12, 10, 9, 3, 1, 1, 1, 3, 9, 15, 27, 16, 20, 12, 14, 3, 3, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Sep 23 2014

Keywords

Comments

It would be nice to have a more explicit definition.

Examples

			Triangle begins:
1,
1,3,3,1,
1,3,9,5,7,11,
1,3,9,15,12,10,9,3,1,1,
1,3,9,15,27,16,20,12,14,3,3,1,1,
...
		

Crossrefs

The diagonals on the left are given by A247643.

A355011 Array read by ascending antidiagonals: T(n, k) is the number of self-conjugate n-core partitions with k corners.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 3, 4, 5, 1, 1, 3, 9, 5, 7, 1, 1, 4, 9, 15, 7, 8, 1, 1, 4, 16, 15, 27, 8, 10, 1, 1, 5, 16, 34, 27, 37, 10, 11, 1, 1, 5, 25, 34, 76, 37, 55, 11, 13, 1, 1, 6, 25, 65, 76, 124, 55, 69, 13, 14, 1, 1, 6, 36, 65, 175, 124, 216, 69, 93, 14, 16, 1, 1
Offset: 2

Views

Author

Stefano Spezia, Jun 15 2022

Keywords

Comments

T(n, k) is also equal to the number of cornerless symmetric Motzkin paths of length 2*k + n - 1 with n - 1 flat steps (see Theorem 3.7 and Proposition 3.8 at pp. 16 - 17 in Cho et al.).

Examples

			The array begins:
  1,  1,  1,   1,   1,   1,    1,    1, ...
  1,  1,  1,   1,   1,   1,    1,    1, ...
  2,  4,  5,   7,   8,  10,   11,   13, ...
  2,  4,  5,   7,   8,  10,   11,   13, ...
  3,  9, 15,  27,  37,  55,   69,   93, ...
  3,  9, 15,  27,  37,  55,   69,   93, ...
  4, 16, 34,  76, 124, 216,  309,  471, ...
  4, 16, 34,  76, 124, 216,  309,  471, ...
  5, 25, 65, 175, 335, 675, 1095, 1875, ...
  5, 25, 65, 175, 335, 675, 1095, 1875, ...
  ...
		

Crossrefs

Cf. A000012 (n = 2,3), A001651, A004526 (k = 1), A008794 (k = 2), A247643 (n = 6,7), A355010.

Programs

  • Mathematica
    T[n_,k_]:=Sum[Binomial[Floor[(k-1)/2],Floor[(i-1)/2]]Binomial[Floor[k/2],Floor[i/2]]Binomial[Floor[n/2]+k-i,k],{i,Min[k,Floor[n/2]]}]; Flatten[Table[T[n-k+1,k],{n,2,13},{k,1,n-1}]]

Formula

T(n, k) = Sum_{i=1..min(k,floor(n/2))} binomial(floor((k-1)/2), floor((i-1)/2))*binomial(floor(k/2), floor(i/2))*binomial(floor(n/2)+k-i, k). (See proposition 3.8 in Cho et al.).
T(4, n) = T(5, n) = A001651(n+1).

A378809 Triangle read by rows: T(n,k) is the number of peak and valleyless Motzkin meanders of length n with k horizontal steps.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 5, 9, 4, 1, 1, 7, 15, 16, 5, 1, 1, 8, 27, 34, 25, 6, 1, 1, 10, 37, 76, 65, 36, 7, 1, 1, 11, 55, 124, 175, 111, 49, 8, 1, 1, 13, 69, 216, 335, 351, 175, 64, 9, 1, 1, 14, 93, 309, 675, 776, 637, 260, 81, 10, 1
Offset: 0

Views

Author

John Tyler Rascoe, Dec 08 2024

Keywords

Comments

Motzkin meanders are lattice paths starting at (0,0) with steps Up (0,1), Horizontal (1,0), and Down (0,-1) that stay weakly above the x-axis. Peak and valleyless Motzkin meanders avoid UD and DU.

Examples

			The triangle begins
   k=0   1   2   3   4   5   6   7
 n=0 1;
 n=1 1,  1;
 n=2 1,  2,  1;
 n=3 1,  4,  3,  1;
 n=4 1,  5,  9,  4,  1;
 n=5 1,  7, 15, 16,  5,  1;
 n=6 1,  8, 27, 34, 25,  6,  1;
 n=7 1, 10, 37, 76, 65, 36,  7,  1;
 ...
T(3,0) = 1: UUU.
T(3,1) = 4: UUH, UHU, UHD, HUU.
T(3,2) = 3: UHH, HHU, HUH.
T(3,3) = 1: HHH.
		

Crossrefs

Cf. column k=1 A001651, A005773, A088855, column k=2 A247643, row sums A308435, A378810.

Programs

  • PARI
    A088855(n,k) = {binomial(floor((n-1)/2), floor((k-1)/2))*binomial(ceil((n-1)/2),ceil((k-1)/2))}
    A_xy(N) = {my(x='x+O('x^N), h = sum(n=0,N, (1/(1-y*x)^(n+1)) * (if(n<1,1,0) + sum(k=1,n, A088855(n,k)*x^(n+k-1)*(y^(k-1)) )) )); for(n=0,N-1,print(Vecrev(polcoeff(h,n))))}
    A_xy(10)

Formula

G.f.: Sum_{n>=0} 1/(1-y*x)^(n+1) * ([n=0] + Sum_{k=1..n} A088855(n,k)*x^(n+k-1)*y^(k-1)).

A287351 Numbers k such that (10^k*361 - 163)/9 is prime (k > 0).

Original entry on oeis.org

1, 3, 9, 15, 27, 37, 165, 207, 897, 5761, 16753, 17995, 96567
Offset: 1

Views

Author

Mikk Heidemaa, May 23 2017

Keywords

Comments

a(14) > 10^5. - Robert Price, Oct 31 2017

Examples

			If k = 1 then (10^1*361 - 163)/9 = 383 (prime), so 1 is a term.
If k = 9 then (10^9*361 - 163)/9 = 40111111093 (prime), so 9 is a term.
		

Crossrefs

Cf. A247643.

Programs

  • Mathematica
    ParallelMap[ If[ PrimeQ[ (10^# 361-163)/9], #, Nothing] &, Range[6000]]

Extensions

a(13) from Robert Price, Oct 31 2017
Showing 1-4 of 4 results.