cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247719 Decimal expansion of Integral_{t=0..Pi/2} sqrt(tan(t)) dt.

Original entry on oeis.org

2, 2, 2, 1, 4, 4, 1, 4, 6, 9, 0, 7, 9, 1, 8, 3, 1, 2, 3, 5, 0, 7, 9, 4, 0, 4, 9, 5, 0, 3, 0, 3, 4, 6, 8, 4, 9, 3, 0, 7, 3, 1, 0, 8, 4, 4, 6, 8, 7, 8, 4, 5, 1, 1, 1, 5, 4, 2, 6, 9, 7, 8, 0, 3, 4, 7, 8, 2, 1, 7, 3, 9, 6, 5, 4, 9, 7, 3, 6, 9, 5, 5, 2, 8, 7, 6, 6, 3, 4, 6, 7, 3, 8, 2, 3, 8, 2, 6, 1, 8, 6, 8, 1, 7
Offset: 1

Views

Author

Jean-François Alcover, Sep 23 2014

Keywords

Examples

			2.22144146907918312350794049503034684930731...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Pi(R)/Sqrt(2); // G. C. Greubel, Sep 07 2018
  • Mathematica
    RealDigits[Pi/Sqrt[2], 10, 104] // First
  • PARI
    default(realprecision, 100); Pi/sqrt(2) \\ G. C. Greubel, Sep 07 2018
    

Formula

Equals Pi/sqrt(2).
Equals A063448/2.
c = 2*( Sum_{k >= 0} (-1)^k/(4*k + 1) + Sum_{k >= 0} (-1)^k/(4*k + 3) ) = 2*(A181048 + A181049). - Peter Bala, Sep 21 2016
From Amiram Eldar, Aug 07 2020: (Start)
Equals Integral_{x=0..Pi} 1/(cos(x)^2 + 1) dx = Integral_{x=0..Pi} 1/(sin(x)^2 + 1) dx.
Equals Integral_{x=-oo..oo} 1/(x^4 + 1) dx.
Equals Integral_{x=-oo..oo} x^2/(x^4 + 1) dx.
Equals Integral_{x=0..oo} log(1 + 1/(2 * x^2)) dx. (End)
Equals Integral_{x=0..2*Pi} 1/(3 + sin(x)) dx; since for a>1: Integral_{x=0..2*Pi} 1/(a + sin(x)) dx = 2*Pi/sqrt(a^2-1). - Bernard Schott, Feb 19 2023
Equals 20/9 - 160*Sum_{n >= 1} 1/((64*n^2 - 1)*(64*n^2 - 4)*(64*n^2 - 9)). - Peter Bala, Nov 09 2023