A069213 a(n) = n-th positive integer relatively prime to n.
1, 3, 4, 7, 6, 17, 8, 15, 13, 23, 12, 35, 14, 31, 28, 31, 18, 53, 20, 49, 37, 47, 24, 71, 31, 55, 40, 65, 30, 109, 32, 63, 53, 71, 51, 107, 38, 79, 62, 99, 42, 145, 44, 95, 83, 95, 48, 143, 57, 123, 80, 111, 54, 161, 74, 129, 89, 119, 60, 223, 62, 127, 109, 127, 87, 217
Offset: 1
Keywords
Examples
6 is relatively prime to 1, 5, 7, 11, 13, 17,..., the 6th term of this sequence being 17, so a(6) = 17.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a069213 = last . a077581_row -- Reinhard Zumkeller, Sep 26 2014
-
Mathematica
f[n_] := Block[{c = 0, k = 1}, While[c < n, If[CoprimeQ[k, n], c++ ]; k++ ]; k - 1]; Array[f, 66] (* Robert G. Wilson v, Sep 10 2008 *) Table[Position[CoprimeQ[Range[300],n],True,1,n][[-1]],{n,70}]//Flatten (* Harvey P. Dale, Aug 14 2020 *)
-
PARI
for(n=1,100,s=1; while(sum(i=1,s,if(gcd(n,i)-1,0,1))
Formula
a(p) = p+1, p is a prime, a(2^n)= 2^(n+1) - 1. What are a(pq), a(pqr), a(n) where n the product of first k primes? - Amarnath Murthy, Nov 14 2002
Let the remainder when n is divided by phi(n) be r and the quotient be k. I.e., n = k*phi(n) + r. Then k*n + r < a(n) < (k+1)*n. If the phi(n) numbers be arranged in increasing order and if the r-th number is m then a(n) = k*n + m. - Amarnath Murthy, Jul 07 2002
Comments