A247857 Primes of the form a^2 + b^4, with repetition.
2, 5, 17, 17, 37, 41, 97, 97, 101, 137, 181, 197, 241, 257, 257, 277, 281, 337, 337, 401, 457, 577, 617, 641, 641, 661, 677, 757, 769, 821, 857, 881, 881, 977, 1097, 1109, 1201, 1217, 1237, 1297, 1297, 1301, 1321, 1409, 1481, 1601, 1657, 1697, 1777, 2017, 2069, 2137, 2281, 2389, 2417, 2417, 2437
Offset: 1
Keywords
Examples
Since 97 = 4^2 + 3^4 = 9^2 + 2^4, it appears twice in the sequence.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Art of Problem Solving, Fermat's Two Squares Theorem
- John Friedlander and Henryk Iwaniec, Using a parity-sensitive sieve to count prime values of a polynomial, PNAS, vol. 94 no. 4, pp. 1054-1058.
- Marek Wolf, Continued fractions constructed from prime numbers, arXiv:1003.4015 [math.NT], 2010, p. 8.
- Wikipedia, Friedlander-Iwaniec theorem
Programs
-
Haskell
a247857 n = a247857_list !! (n-1) a247857_list = concat $ zipWith replicate a256852_list a000040_list -- Reinhard Zumkeller, Apr 11 2015
-
Mathematica
max = 10^4; r = Reap[Do[n = a^2 + b^4; If[n <= max && PrimeQ[n], Sow[n]], {a, Sqrt[max]}, {b, max^(1/4)}]][[2, 1]]; Union[r, SameTest -> (False&)]
Comments