cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247857 Primes of the form a^2 + b^4, with repetition.

Original entry on oeis.org

2, 5, 17, 17, 37, 41, 97, 97, 101, 137, 181, 197, 241, 257, 257, 277, 281, 337, 337, 401, 457, 577, 617, 641, 641, 661, 677, 757, 769, 821, 857, 881, 881, 977, 1097, 1109, 1201, 1217, 1237, 1297, 1297, 1301, 1321, 1409, 1481, 1601, 1657, 1697, 1777, 2017, 2069, 2137, 2281, 2389, 2417, 2417, 2437
Offset: 1

Views

Author

Jean-François Alcover, Sep 25 2014

Keywords

Comments

Duplicates, which begin 17, 97, 257, 337, etc, are quartan primes A002645, except 2 (noticed by Michel Marcus).
Is there any triple?
No, by the uniqueness part of Fermat's two-squares theorem, at most one duplicate of a^2 + b^4 can exist. Namely, when a is a square, say a = B^2, then a^2 + b^4 = A^2 + B^4 where A = b^2. (This also proves Marcus's comment, since a^2 + b^4 = b^4 + B^4.) - Jonathan Sondow, Oct 03 2015

Examples

			Since 97 = 4^2 + 3^4 = 9^2 + 2^4, it appears twice in the sequence.
		

Crossrefs

Cf. A002645, A028916 (same sequence without repetition).

Programs

  • Haskell
    a247857 n = a247857_list !! (n-1)
    a247857_list = concat $ zipWith replicate a256852_list a000040_list
    -- Reinhard Zumkeller, Apr 11 2015
  • Mathematica
    max = 10^4; r = Reap[Do[n = a^2 + b^4; If[n <= max && PrimeQ[n], Sow[n]], {a, Sqrt[max]}, {b, max^(1/4)}]][[2, 1]]; Union[r, SameTest -> (False&)]