cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247890 Number of digits in (R_n)^n.

Original entry on oeis.org

1, 3, 7, 13, 21, 31, 43, 57, 73, 91, 111, 133, 157, 183, 211, 241, 273, 307, 343, 381, 421, 464, 508, 554, 602, 652, 704, 758, 814, 872, 932, 994, 1058, 1124, 1192, 1262, 1334, 1408, 1484, 1562, 1642, 1724, 1808, 1895, 1983, 2073, 2165, 2259, 2355, 2453, 2553, 2655, 2759, 2865
Offset: 1

Views

Author

Derek Orr, Sep 25 2014

Keywords

Comments

R_n is the n-th repunit (i.e., R_n = 11...111 with n 1's).
From David A. Corneth, Jun 27 2016: (Start)
The number of digits of m is floor(log(m)/log(10)) + 1 for m > 0.
R_n = (10^n - 1) / 9 = (10 - 10^(1-n))/9 * 10^(n-1). Its number of digits is floor(n * log((10 - 10^(1-n))/9) / log(10)) + n * (n - 1) + 1. [corrected by Jason Yuen, Nov 11 2024] (End)

Crossrefs

Programs

  • Magma
    [#Intseq(Floor((10^n-1)/9)^n): n in [1..50]]; // Marius A. Burtea, May 20 2019
    
  • Mathematica
    Table[IntegerLength[((10^n - 1)/9)^n], {n, 54}] (* or *)
    Table[IntegerLength[FromDigits[Table[1, {n}]]^n], {n, 54}] (* Michael De Vlieger, Jun 27 2016 *)
  • PARI
    vector(100,n,#Str(((10^n-1)/9)^n))
    
  • PARI
    a(n) = logint(((10 - 10^(1-n))/9)^n\1,10)+n^2-n+1 \\ David A. Corneth, Jun 27 2016
    
  • Python
    def a(n): return len(str(int("1"*n)**n))
    print([a(n) for n in range(1, 55)]) # Michael S. Branicky, Apr 20 2022

Formula

a(n) = n^2 - n + 1 = A002061(n), for 1 <= n <= 21.
a(n) = n^2 - n + 2 = A014206(n-1), for 22 <= n <= 43.
a(n) = A055642(A245593(n)). - Michel Marcus, Apr 20 2022

Extensions

Incorrect conjectures removed by Georg Fischer, May 19 2019