cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A157007 Numbers k such that 2^k + 27 is prime.

Original entry on oeis.org

1, 2, 4, 5, 8, 10, 13, 14, 16, 40, 41, 44, 86, 110, 125, 133, 134, 145, 154, 184, 194, 301, 308, 320, 685, 1001, 1066, 1496, 1633, 2005, 2864, 3241, 6286, 11585, 12854, 16514, 16540, 19246, 24538, 28705, 57644, 65366, 85276, 89113, 194854, 266680, 376790, 478088
Offset: 1

Views

Author

Edwin Dyke (ed.dyke(AT)btinternet.com), Feb 20 2009

Keywords

Comments

a(49) > 5*10^5. - Robert Price, Nov 06 2015

Examples

			For k = 1, 2^1 + 27 = 29.
For k = 2, 2^2 + 27 = 31.
For k = 4, 2^4 + 27 = 43.
		

Crossrefs

Cf. A019434 (primes 2^k+1), A057732 (2^k+3), A059242 (2^k+5), A057195 (2^k+7), A057196 (2^k+9), A102633 (2^k+11), A102634 (2^k+13), A057197 (2^k+15), A057200 (2^k+17), A057221 (2^k+19), A057201 (2^k+21), A057203 (2^k+23), A157006 (2^k+25), this sequence (2^k+27), A156982 (2^k+29), A247952 (2^k+31), A247953 (2^k+33), A220077 (2^k+35).

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(2^n+27)]; // Vincenzo Librandi, Oct 05 2015
  • Mathematica
    Delete[Union[Table[If[PrimeQ[2^n + 27], n, 0], {n, 1, 2000}]], 1]
    Select[Range[5000],PrimeQ[2^#+27]&] (* Harvey P. Dale, Mar 24 2011 *)
  • PARI
    for(n=1, 1e3, if(isprime(2^n+3^3), print1(n", "))) \\ Altug Alkan, Oct 04 2015
    

Extensions

More terms from Harvey P. Dale, Mar 24 2011
a(33)-a(42) from Robert Price, Oct 04 2015
a(43)-a(47) discovered by Henri Lifchitz and Lelio R Paula from Lifchitz link by Robert Price, Oct 04 2015
a(48) from Robert Price, Nov 06 2015

A247952 Numbers k such that 2^k + 31 is prime.

Original entry on oeis.org

4, 12, 36, 540, 844, 1192, 12136, 84280, 128356, 317464, 3018556
Offset: 1

Views

Author

Vincenzo Librandi, Sep 28 2014

Keywords

Comments

Some terms correspond to probable primes. Lifchitz link shows Paul Underwood discovered 84280, and Lelio R Paula found 128356 and 317464 are in the sequence. - Jens Kruse Andersen, Sep 29 2014
a(11) > 5*10^5. - Robert Price, Oct 25 2015
All terms are even. - Elmo R. Oliveira, Nov 25 2023

Crossrefs

Cf. Numbers k such that 2^k + d is prime: (0,1,2,4,8,16) for d=1; A057732 (d=3), A059242 (d=5), A057195 (d=7), A057196 (d=9), A102633 (d=11), A102634 (d=13), A057197 (d=15), A057200 (d=17), A057221 (d=19), A057201 (d=21), A057203 (d=23), A157006 (d=25), A157007 (d=27), A156982 (d=29), this sequence (d=31), A247953 (d=33), A220077 (d=35).

Programs

  • Magma
    [n: n in [0..2000]| IsPrime(2^n+31)];
    
  • Mathematica
    Select[Range[0,10000], PrimeQ[2^# + 31] &]
  • PARI
    is(n)=ispseudoprime(2^n+31) \\ Charles R Greathouse IV, May 22 2017

Formula

a(n) = 2*A262971(n). - Elmo R. Oliveira, Nov 25 2023

Extensions

12136 and 84280 from Jens Kruse Andersen, Sep 29 2014
a(9)-a(10) (discovered by Lelio R Paula; see the Lifchitz link) added by Robert Price, Oct 04 2015
a(11) discovered by Robert Price, added by Elmo R. Oliveira, Nov 25 2023

A156982 Numbers k such that 2^k + 29 is prime.

Original entry on oeis.org

1, 3, 5, 7, 9, 13, 15, 17, 23, 27, 33, 37, 43, 63, 69, 73, 79, 89, 117, 127, 239, 395, 409, 465, 837, 2543, 10465, 10837, 17005, 19285, 24749, 26473, 29879, 49197, 56673, 67119, 67689, 71007, 109393, 156403, 158757, 181913, 190945, 207865, 222943, 419637
Offset: 1

Views

Author

Edwin Dyke (ed.dyke(AT)btinternet.com), Feb 20 2009

Keywords

Comments

n cannot be of the form 4m+2 or 4m because 2^(2m+2) + 29 is divisible by 3 and 2^4m + 29 is divisible by 15. - Avik Roy (avik_3.1416(AT)yahoo.co.in), Feb 21 2009
a(47) > 5*10^5. - Robert Price, Oct 25 2015

Examples

			For k = 1, 2^1 + 29 = 31.
For k = 3, 2^3 + 29 = 37.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(2^n+29)]; // Vincenzo Librandi, Oct 05 2015
    
  • Mathematica
    Delete[Union[Table[If[PrimeQ[2^n + 29], n, 0], {n, 1, 2600}]], 1]
    Select[Range[500000], PrimeQ[2^#+29]&] (* Robert Price, Oct 04 2015 *)
  • PARI
    is(n)=ispseudoprime(2^n+29) \\ Charles R Greathouse IV, Jun 06 2017

Extensions

a(27)-a(38) from Robert Price, Oct 04 2015
a(39)-a(46) discovered by Henri Lifchitz from Lifchitz link by Robert Price, Oct 04 2015

A157006 Numbers k such that 2^k + 25 is prime.

Original entry on oeis.org

2, 4, 6, 8, 10, 20, 22, 34, 70, 92, 112, 118, 236, 250, 378, 438, 570, 654, 800, 1636, 2848, 4948, 5670, 6772, 7494, 8006, 9056, 11038, 16268, 21416, 21738, 33370, 78706, 112130, 126446, 164046, 219250, 236432, 368048, 524154, 530810, 640854, 699740, 746302, 754038, 754376, 931976, 989562
Offset: 1

Views

Author

Edwin Dyke (ed.dyke(AT)btinternet.com), Feb 20 2009

Keywords

Comments

a(40) > 5*10^5. - Robert Price, Oct 15 2015
Since each term is even (n = 2*k), prime numbers of the form 2^k + 25 (see A104072) also have the form 4^k + 25. Those values of k are given in A204388. - Timothy L. Tiffin, Aug 06 2016

Examples

			For k = 2, 2^2 + 25 = 29.
For k = 4, 2^4 + 25 = 41.
For k = 6, 2^6 + 25 = 89.
		

Crossrefs

Cf. A019434 (primes 2^k+1), A057732 (2^k+3), A059242 (2^k+5), A057195 (2^k+7), A057196 (2^k+9), A102633 (2^k+11), A102634 (2^k+13), A057197 (2^k+15), A057200 (2^k+17), A057221 (2^k+19), A057201 (2^k+21), A057203 (2^k+23), this sequence (2^k+25), A157007 (2^k+27), A156982 (2^k+29), A247952 (2^k+31), A247953 (2^k+33), A220077 (2^k+35).

Programs

  • Magma
    [n: n in [1..1000] | IsPrime(2^n+25)]; // Vincenzo Librandi, Aug 07 2016
    
  • Mathematica
    Delete[Union[Table[If[PrimeQ[2^n + 25], n, 0], {n, 1, 1000}]], 1]
    Select[Range[0, 10000], PrimeQ[2^# + 25] &] (* Vincenzo Librandi, Aug 07 2016 *)
  • PARI
    is(n)=ispseudoprime(2^n+5^2) \\ Charles R Greathouse IV, Feb 20 2017

Formula

a(n) = 2*A204388(n). - Timothy L. Tiffin, Aug 09 2016

Extensions

Extended by Vladimir Joseph Stephan Orlovsky, Feb 27 2011
a(29)-a(39) from Robert Price, Oct 15 2015
a(40)-a(48) found by Stefano Morozzi, added by Elmo R. Oliveira, Nov 25 2023

A220077 Numbers k such that 2^k + 35 is prime.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 15, 25, 33, 57, 117, 133, 189, 195, 263, 273, 287, 509, 693, 1087, 1145, 1159, 1845, 2743, 3275, 12223, 26263, 31425, 44359, 48003, 49251, 62557, 113877, 114507, 132865, 165789, 192549, 348437, 426043, 436365, 471043, 480417
Offset: 1

Views

Author

Vincenzo Librandi, Dec 04 2012

Keywords

Comments

Some terms correspond to probable primes. Lifchitz link shows Lelio R Paula found the terms 132865, 165789, 192549, 348437. - Jens Kruse Andersen, Oct 01 2014
a(43) > 5*10^5. - Robert Price, Nov 01 2015
All terms are odd. - Elmo R. Oliveira, Nov 27 2023

Crossrefs

Cf. Numbers k such that 2^k + d is prime: (0,1,2,4,8,16) for d=1; A057732 (d=3), A059242 (d=5), A057195 (d=7), A057196 (d=9), A102633 (d=11), A102634 (d=13), A057197 (d=15), A057200 (d=17), A057221 (d=19), A057201 (d=21), A057203 (d=23), A157006 (d=25), A157007 (d=27), A156982 (d=29), A247952 (d=31), A247953 (d=33), this sequence (d=35).

Programs

  • Mathematica
    Select[Range[5000],PrimeQ[2^# + 35] &]
  • PARI
    for(n=1, 10^30, if (isprime(2^n + 35), print1(n", "))); \\ Altug Alkan, Oct 05 2015

Extensions

a(26)-a(34) from Jens Kruse Andersen, Oct 01 2014
132865, 165789, 192549, 348437 discovered by Lelio R Paula confirmed as a(35)-a(38) by Robert Price, Oct 05 2015
a(39)-a(42) from Robert Price, Nov 01 2015

A176926 Primes of the form 2^k + 33.

Original entry on oeis.org

37, 41, 97, 2081, 4129, 16417, 32801, 1048609, 1073741857, 1152921504606847009, 295147905179352825889, 37778931862957161709601, 324518553658426726783156020576289, 83076749736557242056487941267521569
Offset: 1

Views

Author

Vincenzo Librandi, Apr 29 2010

Keywords

Crossrefs

Cf. A000040, A247953 (corresponding k's).

Programs

  • Magma
    [ a: n in [0..750] | IsPrime(a) where a is 2^n+33 ]
  • Mathematica
    Select[Table[2^n + 33, {n, 300}], PrimeQ] (* Vincenzo Librandi Dec 01 2012 *)

Formula

a(n) = 2^A247953(n) + 33. - Elmo R. Oliveira, Nov 08 2023

A262201 Prime p such that 2^p + 33 is also prime.

Original entry on oeis.org

2, 3, 11, 1499, 2039
Offset: 1

Views

Author

Robert Price, Oct 04 2015

Keywords

Comments

a(6) > 203018.
A000040 INTERSECT A247953.

Examples

			For p=3, 2^3 + 33 = 41, which is prime.
		

Crossrefs

Cf. A157007.
Cf. similar sequences of the type "Primes p such that 2^p + k" listed in A262098.

Programs

  • Magma
    [p: p in PrimesUpTo(1000) | IsPrime(2^p+33)]; // Vincenzo Librandi, Oct 05 2015
    
  • Mathematica
    Select[Prime[Range[100000]], PrimeQ[(2^# + 33)] &]
  • PARI
    forprime(p=2, 10000, if (isprime(2^p + 33), print1(p", "))); \\ Altug Alkan, Oct 05 2015

A262972 Numbers k such that 4^k + 33 is prime.

Original entry on oeis.org

1, 3, 6, 7, 10, 15, 30, 34, 54, 58, 103, 105, 205, 223, 279, 741, 2098, 3523, 9210, 37674, 89895, 101509, 217123
Offset: 1

Views

Author

Robert Price, Oct 05 2015

Keywords

Comments

Contains exactly the halved even terms of A247953.
The next terms are > 2*10^5.

Examples

			For k = 30, 4^30 + 33 = 1152921504606847009 is prime.
		

Crossrefs

Cf. A247953, A253772 (similar sequence).

Programs

  • Magma
    [n: n in [0..700] | IsPrime(4^n+33)]; // Vincenzo Librandi, Oct 06 2015
    
  • Mathematica
    Select[Range[0, 250000], PrimeQ[4^# + 33] &]
  • PARI
    for(n=1, 1e3, if(isprime(4^n+33), print1(n", "))) \\ Altug Alkan, Oct 06 2015

Extensions

a(23) derived from A247953 by Elmo R. Oliveira, Nov 28 2023
Showing 1-8 of 8 results.