A247967 a(n) is the smallest k such that prime(k+i) (mod 6) takes successively the values 5, 5, ... for i = 0, 1, ..., n-1.
3, 9, 15, 54, 290, 987, 4530, 21481, 58554, 60967, 136456, 136456, 673393, 1254203, 1254203, 7709873, 21357253, 21357253, 25813464, 25813464, 39500857, 39500857, 947438659, 947438659, 947438659, 5703167678, 5703167678, 16976360924, 68745739764, 117327812949
Offset: 1
Keywords
Examples
a(1)= 3 => prime(3) == 5 (mod 6). a(2)= 9 => prime(9) == 5 (mod 6), prime(10) == 5 (mod 6). a(3)= 15 => prime(15) == 5 (mod 6), prime(16) == 5 (mod 6), prime(17) == 5 (mod 6). From _Michel Marcus_, Sep 30 2014: (Start) The resulting primes are: 5; 23, 29; 47, 53, 59; 251, 257, 263, 269; 1889, 1901, 1907, 1913, 1931; 7793, 7817, 7823, 7829, 7841, 7853; 43451, 43457, 43481, 43487, 43499, 43517, 43541; 243161, 243167, 243197, 243203, 243209, 243227, 243233, 243239; ... (End)
Links
- Amiram Eldar, Table of n, a(n) for n = 1..35
Programs
-
MATLAB
N = 2*10^8; % to use primes up to N P = mod(primes(N),6); P5 = find(P==5); n5 = numel(P5); a(1) = P5(1); for k = 2:100 r = find(P5(k:n5) == P5(1:n5+1-k)+k-1,1,'first'); if numel(r) == 0 break end a(k) = P5(r); end a % Robert Israel, Sep 02 2016
-
Maple
for n from 1 to 22 do : ii:=0: for k from 3 to 10^5 while (ii=0)do : s:=0: for i from 0 to n-1 do: r:=irem(ithprime(k+i),6): if r = 5 then s:=s+1: else fi: od: if s=n and ii=0 then printf ( "%d %d \n",n,k):ii:=1: else fi: od: od:
-
Mathematica
Table[k = 1; While[Times @@ Boole@ Map[Mod[Prime[k + #], 6] == 5 &, Range[0, n - 1]] == 0, k++]; k, {n, 10}] (* Michael De Vlieger, Sep 02 2016 *)
-
PARI
a(n) = {k = 1; ok = 0; while (!ok, nb = 0; for (i=0, n-1, if (prime(k+i) % 6 == 5, nb++, break);); if (nb == n, ok=1, k++);); k;} \\ Michel Marcus, Sep 28 2014
-
PARI
m=c=i=0;forprime(p=1,, i++;p%6!=5&&(!c||!c=0)&&next; c++>m||next; print1(1+i-m=c,",")) \\ M. F. Hasler, Sep 02 2016
Formula
a(n) = primepi(A057622(n)). - Michel Marcus, Oct 01 2014
Extensions
a(11)-a(22) from A057622 by Michel Marcus, Oct 03 2014
a(23)-a(25) from Jinyuan Wang, Jul 08 2019
a(26)-a(30) added using A057622 by Jinyuan Wang, Apr 15 2020
Comments