cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247967 a(n) is the smallest k such that prime(k+i) (mod 6) takes successively the values 5, 5, ... for i = 0, 1, ..., n-1.

Original entry on oeis.org

3, 9, 15, 54, 290, 987, 4530, 21481, 58554, 60967, 136456, 136456, 673393, 1254203, 1254203, 7709873, 21357253, 21357253, 25813464, 25813464, 39500857, 39500857, 947438659, 947438659, 947438659, 5703167678, 5703167678, 16976360924, 68745739764, 117327812949
Offset: 1

Views

Author

Michel Lagneau, Sep 28 2014

Keywords

Comments

Weakening the definition to prime(k+i) == 2 (mod 3) yields a(1) = 1, but all other terms are unchanged. See also A247816 (residue 5) or A276414 (equal residues, all 1 or all -1). - M. F. Hasler, Sep 02 2016

Examples

			a(1)= 3 => prime(3) == 5 (mod 6).
a(2)= 9 => prime(9) == 5 (mod 6), prime(10) == 5 (mod 6).
a(3)= 15 => prime(15) == 5 (mod 6), prime(16) == 5 (mod 6), prime(17) == 5 (mod 6).
From _Michel Marcus_, Sep 30 2014: (Start)
The resulting primes are:
  5;
  23, 29;
  47, 53, 59;
  251, 257, 263, 269;
  1889, 1901, 1907, 1913, 1931;
  7793, 7817, 7823, 7829, 7841, 7853;
  43451, 43457, 43481, 43487, 43499, 43517, 43541;
  243161, 243167, 243197, 243203, 243209, 243227, 243233, 243239;
  ... (End)
		

Crossrefs

Programs

  • MATLAB
    N = 2*10^8; % to use primes up to N
    P = mod(primes(N),6);
    P5 = find(P==5);
    n5 = numel(P5);
    a(1) = P5(1);
    for k = 2:100
      r = find(P5(k:n5) == P5(1:n5+1-k)+k-1,1,'first');
      if numel(r) == 0
         break
      end
      a(k) = P5(r);
    end
    a % Robert Israel, Sep 02 2016
  • Maple
    for n from 1 to 22 do :
    ii:=0:
       for k from 3 to 10^5 while (ii=0)do :
         s:=0:
          for i from 0 to n-1 do:
            r:=irem(ithprime(k+i),6):
            if r = 5
            then
            s:=s+1:
            else
            fi:
          od:
           if s=n and ii=0
           then
           printf ( "%d %d \n",n,k):ii:=1:
           else
           fi:
        od:
    od:
  • Mathematica
    Table[k = 1; While[Times @@ Boole@ Map[Mod[Prime[k + #], 6] == 5 &, Range[0, n - 1]] == 0, k++]; k, {n, 10}] (* Michael De Vlieger, Sep 02 2016 *)
  • PARI
    a(n) = {k = 1; ok = 0; while (!ok, nb = 0; for (i=0, n-1, if (prime(k+i) % 6 == 5, nb++, break);); if (nb == n, ok=1, k++);); k;} \\ Michel Marcus, Sep 28 2014
    
  • PARI
    m=c=i=0;forprime(p=1,, i++;p%6!=5&&(!c||!c=0)&&next; c++>m||next; print1(1+i-m=c,",")) \\ M. F. Hasler, Sep 02 2016
    

Formula

a(n) = primepi(A057622(n)). - Michel Marcus, Oct 01 2014

Extensions

a(11)-a(22) from A057622 by Michel Marcus, Oct 03 2014
a(23)-a(25) from Jinyuan Wang, Jul 08 2019
a(26)-a(30) added using A057622 by Jinyuan Wang, Apr 15 2020