A247984 Constant terms of congruences derived from a permutation polynomial motivated by generalized quadrangles.
2, 6, 8, 10, 32, 84, 128, 186, 512, 1276, 2048, 3172, 8192, 19816, 32768, 52666, 131072, 310764, 524288, 863820, 2097152, 4899736, 8388608, 14073060, 33554432, 77509464, 134217728, 228318856, 536870912, 1228859344, 2147483648
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- V. Dmytrenko, F. Lazebnik, and J. Williford, On monomial graphs of girth eight, Finite Fields and Their Applications 13 (2007), 828-842.
- Brian G. Kronenthal, Monomial Graphs and Generalized Quadrangles, Finite Fields and Their Applications, 18 (2012), 674-684.
- B. G. Kronenthal, An Integer Sequence Motivated by Generalized Quadrangles, Journal of Integer Sequences, 2015, Vol. 18. #15.7.8.
Crossrefs
Cf. A246800.
Programs
-
Maple
A247984 := proc(n) if type(n,'odd') then 2^n; else 2^n-(-1)^(n/2)*binomial(n, n/2) ; end if; end proc: # R. J. Mathar, Jun 09 2018
-
Mathematica
For[n = 1, n < 31, n++, Piecewise[{{Print[2^n - (-1)^(n/2) * Binomial[n, n/2]], EvenQ[n]}, {Print[2^n], OddQ[n]}}]] Rest[With[{nn = 50}, CoefficientList[Series[Exp[2*x] - BesselJ[0, 2*x], {x, 0, nn}], x]*Range[0, nn]!]] (* G. C. Greubel, Aug 16 2017 *)
-
PARI
a(n) = if (n % 2, 2^n, 2^n - (-1)^(n/2)*binomial(n, n/2)); \\ Michel Marcus, Oct 01 2014
Formula
a(n) = 2^n when n is odd and a(n) = 2^n - (-1)^(n/2)*binomial(n, n/2) when n is even.
From Robert Israel, Oct 01 2014: (Start)
G.f.: 1/(1-2*x) - 1/sqrt(1+4*x^2).
E.g.f.: exp(2*x) - J_0(2*x) where J_0 is a Bessel function. (End)
n*(2*n-3)*a(n) -2*(2*n-1)*(n-1)*a(n-1) +4*(n-1)*(2*n-3)*a(n-2) -8*(2*n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, Jun 09 2018
Comments