cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248003 a(n) = (sum of totatives of n ) / (2^(omega(n)-1)); a(n) = A023896(n) / A007875(n).

Original entry on oeis.org

1, 1, 3, 4, 10, 3, 21, 16, 27, 10, 55, 12, 78, 21, 30, 64, 136, 27, 171, 40, 63, 55, 253, 48, 250, 78, 243, 84, 406, 30, 465, 256, 165, 136, 210, 108, 666, 171, 234, 160, 820, 63, 903, 220, 270, 253, 1081, 192, 1029, 250, 408, 312, 1378, 243, 550, 336
Offset: 1

Views

Author

Jaroslav Krizek, Sep 29 2014

Keywords

Examples

			For n=30; a(30) = A023896(30)/A007875(30) = 120/4 = 30.
		

Crossrefs

Programs

  • Magma
    [(n*EulerPhi(n)/2)/(2^((#(PrimeDivisors(n)))-1)): n in [1..100]]
    
  • Mathematica
    Table[n*EulerPhi[n]/2^PrimeNu[n], {n,60}] (* G. C. Greubel, May 22 2017 *)
  • PARI
    A248003(n) = n*eulerphi(n)/2^omega(n); \\ G. C. Greubel, May 22 2017; Jul 13 2024
    
  • SageMath
    def A248003(n): return int(n*euler_phi(n)/2^(gp.omega(n)))
    [A248003(n) for n in range(1,61)] # G. C. Greubel, Jul 13 2024

Formula

a(n) = A023896(n)/A007875(n) = A023896(n)/2^(A001221(n)-1).
a(n) = (n/2)*A000010(n)/2^(A001221(n)-1) = n*A023022(n)/A007875(n).
a(n) = 2*A023896(n)/A034444(n) = n*A000010(n)/A034444(n).
a(n) is multiplicative with a(p^e) = (p-1)*p^(2e-1)/2.
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + 2*p/((p-1)^2 * (p+1))) = 3.96555686901754604330173765246769123681199917183404752314230450571038281... - Vaclav Kotesovec, Sep 20 2020