A248020 Numbers which are coprime to the sum of their divisors, but are neither primes nor perfect powers.
21, 35, 39, 50, 55, 57, 63, 65, 75, 77, 85, 93, 98, 111, 115, 119, 129, 133, 143, 155, 161, 171, 175, 183, 185, 187, 189, 201, 203, 205, 209, 215, 217, 219, 221, 235, 237, 242, 245, 247, 253, 259, 265, 275, 279, 291, 299, 301, 305, 309, 319, 323, 325, 327, 329, 333, 335, 338, 341
Offset: 1
Examples
21 is in the sequence since it is neither a prime nor a powerful number and its divisors 1, 3, 7, and 21 sum to 32, which is coprime to 21. 50 is in the sequence since it is neither a prime nor a powerful number and its divisors 1, 2, 5, 10, 25, and 50 sum to 93, which is coprime to 50.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
perfectPowerQ[n_] := n == 1 || GCD @@ FactorInteger[n][[All, 2]] > 1; Select[ Range@ 350, !PrimeQ[ #] && GCD[#, DivisorSigma[1, #]] == 1 && !perfectPowerQ[ #] &] cpQ[n_]:=CoprimeQ[n,DivisorSigma[1,n]]&&!PrimeQ[n]&&GCD@@ FactorInteger[ n][[All,2]]<2; Select[Range[2,400],cpQ] (* Harvey P. Dale, Oct 05 2020 *)
-
PARI
forcomposite(n=1, 1e3, if(gcd(n, sigma(n))==1, if(!ispower(n), print1(n, ", ")))) \\ Felix Fröhlich, Oct 25 2014
Comments