cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A248094 The hyper-Wiener index of the hexagonal triangle T_n, defined in the He et al. reference.

Original entry on oeis.org

0, 42, 444, 2187, 7443, 20247, 47313, 98994, 190386, 342576, 584034, 952149, 1494909, 2272725, 3360399, 4849236, 6849300, 9491814, 12931704, 17350287, 22958103, 29997891, 38747709, 49524198, 62685990, 78637260, 97831422, 120774969, 148031457, 180225633, 218047707
Offset: 0

Views

Author

Emeric Deutsch, Nov 14 2014

Keywords

Crossrefs

Programs

  • Magma
    [n*(66+407*n+670*n^2+425*n^3+104*n^4+8*n^5)/40: n in [0..30]]; // Vincenzo Librandi, Nov 15 2014
  • Maple
    a := n -> (1/40)*n*(66 + 407*n + 670*n^2 + 425*n^3 + 104*n^4 + 8*n^5): seq(a(n), n = 0 .. 30);
  • Mathematica
    CoefficientList[Series[x (42 + 150 x - 39 x^2 - 12 x^3 + 3 x^4) / (1 - x)^7, {x, 0, 30}], x] (* Vincenzo Librandi, Nov 15 2014 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,42,444,2187,7443,20247,47313},40] (* Harvey P. Dale, Oct 22 2022 *)

Formula

a(n) = n*(66 + 407n + 670n^2 + 425n^3 + 104n^4 + 8n^5)/40 (see Corollary 3,10 in the He et al. reference).
G.f.: z*(42+150*z-39*z^2-12*z^3+3*z^4) /(1-z)^7. (Corrected by Vincenzo Librandi, Nov 15 2014)
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n > 6. - Wesley Ivan Hurt, Aug 16 2016
Showing 1-1 of 1 results.