A248101 Completely multiplicative with a(prime(n)) = prime(n)^((n+1) mod 2).
1, 1, 3, 1, 1, 3, 7, 1, 9, 1, 1, 3, 13, 7, 3, 1, 1, 9, 19, 1, 21, 1, 1, 3, 1, 13, 27, 7, 29, 3, 1, 1, 3, 1, 7, 9, 37, 19, 39, 1, 1, 21, 43, 1, 9, 1, 1, 3, 49, 1, 3, 13, 53, 27, 1, 7, 57, 29, 1, 3, 61, 1, 63, 1, 13, 3, 1, 1, 3, 7, 71, 9, 1, 37, 3, 19, 7, 39, 79
Offset: 1
Examples
Since 10 = 2*5, 2 = prime(1), and 5 = prime(3), a(10) = 1*1 = 1. Since 9 = 3^2 and 3 is an even-indexed prime, 3 = prime(2), then a(9) = 3^2 = 9. Since 35 = 5*7, 5 = prime(3), and 7 = prime(4), we see that a(35) = 1*7 = 7.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Index to divisibility sequences
Programs
-
Haskell
a248101 = product . filter (even . a049084) . a027746_row -- Reinhard Zumkeller, Mar 06 2015
-
Mathematica
f[n_] := Block[{a, g, pf = FactorInteger@ n}, a = PrimePi[First /@ pf]; g[x_] := If[Or[OddQ@ x, x == 0], 1, Prime@ x]; Times @@ Power @@@ Transpose@ {g /@ a, Last /@ pf}]; Array[f, 120] (* Michael De Vlieger, Mar 03 2015 *) Array[Times @@ (FactorInteger[#] /. {p_, e_} /; e > 0 :> (p^Mod[PrimePi@ p + 1, 2])^e) &, 79] (* Michael De Vlieger, Apr 05 2017 *)
-
PARI
a(n) = {f = factor(n); for (i=1, #f~, f[i,2] *= (primepi(f[i,1])+1) % 2;); factorback(f);} \\ Michel Marcus, Mar 03 2015
-
Sage
n=100; evenIndexPrimes=[primes_first_n(2*n+2)[2*i+1] for i in [0..n]] [prod([(x[0]^(x[0] in evenIndexPrimes))^x[1] for x in factor(n)]) for n in [1..n]]
Comments