cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A284564 a(n) = A248101(A277324(n)).

Original entry on oeis.org

1, 3, 9, 3, 9, 27, 9, 21, 63, 27, 81, 189, 63, 189, 441, 21, 63, 1323, 567, 1323, 3969, 1701, 3969, 1323, 441, 9261, 27783, 1323, 3087, 9261, 441, 273, 819, 1323, 27783, 64827, 27783, 583443, 1361367, 9261, 27783, 4084101, 1750329, 583443, 1361367, 583443, 194481, 17199, 5733, 453789, 9529569, 453789, 1361367, 28588707, 1361367, 120393, 280917, 453789, 1361367
Offset: 0

Views

Author

Antti Karttunen, Mar 29 2017

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Which[n < 2, n + 1, EvenQ@ n, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &@ a[n/2], True, a[#] a[# + 1] &[(n - 1)/2]]; Table[Times @@ (FactorInteger[#] /. {p_, e_} /; e > 0 :> (p^Mod[PrimePi@ p + 1, 2])^e) &@ a[2 n + 1], {n, 0, 58}] (* Michael De Vlieger, Apr 05 2017 *)
  • PARI
    A284564(n) = A284554(n+n+1); \\ Other code as in A284554.
    
  • Scheme
    (define (A284564 n) (A248101 (A277324 n)))
    (define (A284564 n) (A284554 (+ n n 1)))

Formula

a(n) = A248101(A277324(n)).
a(n) = A284554((2*n)+1).
Other identities. For all n >= 0:
A001222(a(n)) = A284566(n).

A284554 Prime factorization representation of Stern polynomials B(n,x) with only the odd powers of x present: a(n) = A248101(A260443(n)).

Original entry on oeis.org

1, 1, 3, 3, 1, 9, 3, 3, 7, 9, 3, 27, 7, 9, 21, 21, 1, 63, 21, 27, 49, 81, 21, 189, 7, 63, 147, 189, 7, 441, 21, 21, 13, 63, 21, 1323, 49, 567, 1029, 1323, 7, 3969, 1029, 1701, 343, 3969, 147, 1323, 13, 441, 1029, 9261, 49, 27783, 1029, 1323, 91, 3087, 147, 9261, 91, 441, 273, 273, 1, 819, 273, 1323, 637, 27783, 1029, 64827, 91, 27783, 50421, 583443, 343
Offset: 0

Views

Author

Antti Karttunen, Mar 29 2017

Keywords

Comments

a(n) = Prime factorization representation of Stern polynomials B(n,x) where the coefficients of even powers of x (including the constant term) are replaced by zeros. In other words, only the terms with odd powers of x are present. See the examples.

Examples

			n A260443(n)                      Stern            With even powers
             prime factorization  polynomial       of x cleared  -> a(n)
------------------------------------------------------------------------
0       1    (empty)              B_0(x) = 0                    0  |  1
1       2    p_1                  B_1(x) = 1                    0  |  1
2       3    p_2                  B_2(x) = x                    x  |  3
3       6    p_2 * p_1            B_3(x) = x + 1                x  |  3
4       5    p_3                  B_4(x) = x^2                  0  |  1
5      18    p_2^2 * p_1          B_5(x) = 2x + 1              2x  |  9
6      15    p_3 * p_2            B_6(x) = x^2 + x              x  |  3
7      30    p_3 * p_2 * p_1      B_7(x) = x^2 + x + 1          x  |  3
8       7    p_4                  B_8(x) = x^3                x^3  |  7
9      90    p_3 * p_2^2 * p_1    B_9(x) = x^2 + 2x + 1        2x  |  9
10     75    p_3^2 * p_2          B_10(x) = 2x^2 + x            x  |  3
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Which[n < 2, n + 1, EvenQ@ n, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &@ a[n/2], True, a[#] a[# + 1] &[(n - 1)/2]]; Table[Times @@ (FactorInteger[#] /. {p_, e_} /; e > 0 :> (p^Mod[PrimePi@ p + 1, 2])^e) &@ a@ n, {n, 0, 76}] (* Michael De Vlieger, Apr 05 2017 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From Michel Marcus
    A260443(n) = if(n<2, n+1, if(n%2, A260443(n\2)*A260443(n\2+1), A003961(A260443(n\2)))); \\ Cf. Charles R Greathouse IV's code for "ps" in A186891 and A277013.
    A248101(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 2] *= (primepi(f[i, 1])+1) % 2; ); factorback(f); } \\ After Michel Marcus
    A284554(n) = A248101(A260443(n));
    
  • Scheme
    (define (A284554 n) (A248101 (A260443 n)))

Formula

a(0) = a(1) = 1, a(2n) = A003961(A284553(n)), a(2n+1) = a(n)*a(n+1).
Other identities. For all n >= 0:
a(n) = A248101(A260443(n)).
a(n) = A260443(n) / A284553(n).
a(n) = A064989(A284553(2n)).
A001222(a(n)) = A284556(n).

A277324 Odd bisection of A260443 (the even terms): a(n) = A260443((2*n)+1).

Original entry on oeis.org

2, 6, 18, 30, 90, 270, 450, 210, 630, 6750, 20250, 9450, 15750, 47250, 22050, 2310, 6930, 330750, 3543750, 1653750, 4961250, 53156250, 24806250, 727650, 1212750, 57881250, 173643750, 18191250, 8489250, 25467750, 2668050, 30030, 90090, 40020750, 1910081250, 891371250, 9550406250, 455814843750, 212713593750
Offset: 0

Views

Author

Antti Karttunen, Oct 10 2016

Keywords

Comments

From David A. Corneth, Oct 22 2016: (Start)
The exponents of the prime factorization of a(n) are first nondecreasing, then nonincreasing.
The exponent of 2 in the prime factorization of a(n) is 1. (End)

Examples

			A method to find terms of this sequence, explained by an example to find a(7). To find k = a(7), we find k such that A048675(k) = 2*7+1 = 15. 7 has the binary partitions: {[7, 0, 0], [5, 1, 0], [3, 2, 0], [1, 3, 0], [3, 0, 1], [1, 1, 1]}. To each of those, we prepend a 1. This gives the binary partitions of 15 starting with a 1. For example, for the first we get [1, 7, 0, 0]. We see that only [1, 5, 1, 0], [1, 3, 2, 0] and [1, 1, 1, 1] start nondecreasing, then nonincreasing, so we only check those. These numbers will be the exponents in a prime factorization. [1, 5, 1, 0] corresponds to prime(1)^1 * prime(2)^5 * prime(3)^1 * prime(4)^0 = 2430. We find that [1, 1, 1, 1] gives k = 210 for which A048675(k) = 15 so a(7) = 210. - _David A. Corneth_, Oct 22 2016
		

Crossrefs

Cf. A277200 (same sequence sorted into ascending order).

Programs

  • Mathematica
    a[n_] := a[n] = Which[n < 2, n + 1, EvenQ@ n, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &@ a[n/2], True, a[#] a[# + 1] &[(n - 1)/2]]; Table[a[2 n + 1], {n, 0, 38}] (* Michael De Vlieger, Apr 05 2017 *)
  • Python
    from sympy import factorint, prime, primepi
    from operator import mul
    def a003961(n):
        F=factorint(n)
        return 1 if n==1 else reduce(mul, [prime(primepi(i) + 1)**F[i] for i in F])
    def a260443(n): return n + 1 if n<2 else a003961(a260443(n//2)) if n%2==0 else a260443((n - 1)//2)*a260443((n + 1)//2)
    def a(n): return a260443(2*n + 1)
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 21 2017

Formula

a(n) = A260443((2*n)+1).
a(0) = 2; for n >= 1, a(n) = A260443(n) * A260443(n+1).
Other identities. For all n >= 0:
A007949(a(n)) = A005811(n). [See comments in A125184.]
A156552(a(n)) = A277189(n), a(n) = A005940(1+A277189(n)).
A048675(a(n)) = 2n + 1. - David A. Corneth, Oct 22 2016
A001222(a(n)) = A007306(1+n).
A056169(a(n)) = A284267(n).
A275812(a(n)) = A284268(n).
A248663(a(n)) = A283975(n).
A000188(a(n)) = A283484(n).
A247503(a(n)) = A284563(n).
A248101(a(n)) = A284564(n).
A046523(a(n)) = A284573(n).
a(n) = A277198(n) * A284008(n).
a(n) = A284576(n) * A284578(n) = A284577(n) * A000290(A284578(n)).

Extensions

More linking formulas added by Antti Karttunen, Apr 16 2017

A247503 Completely multiplicative with a(prime(n)) = prime(n)^(n mod 2).

Original entry on oeis.org

1, 2, 1, 4, 5, 2, 1, 8, 1, 10, 11, 4, 1, 2, 5, 16, 17, 2, 1, 20, 1, 22, 23, 8, 25, 2, 1, 4, 1, 10, 31, 32, 11, 34, 5, 4, 1, 2, 1, 40, 41, 2, 1, 44, 5, 46, 47, 16, 1, 50, 17, 4, 1, 2, 55, 8, 1, 2, 59, 20, 1, 62, 1, 64, 5, 22, 67, 68, 23, 10, 1, 8, 73, 2, 25, 4
Offset: 1

Views

Author

Tom Edgar, Mar 03 2015

Keywords

Comments

To compute a(n) replace even-indexed primes in the prime factorization of n by 1.
a(p) = p if p is in A031368.
a(p) = 1 if p is in A031215.

Examples

			Since 10 = 2*5, 2 = prime(1), and 5 = prime(3), a(10) = 2*5 = 10.
Since 9 = 3^2 and 3 is an even-indexed prime, 3 = prime(2), then a(9) = 1^2 = 1.
Since 30 = 2*3*5, 2 = prime(1), 3 = prime(2), and 5 = prime(3), we see that a(30) = 2*1*5 = 10.
		

Crossrefs

First 28 terms are the same as A343430.

Programs

  • Haskell
    a247503 = product . filter (odd . a049084) . a027746_row
    -- Reinhard Zumkeller, Mar 06 2015
    
  • Mathematica
    f[n_] := Block[{a, g, pf = FactorInteger@ n}, a = PrimePi[First /@ pf]; g[x_] := If[EvenQ@ x, 1, Prime@ x]; Times @@ Power @@@ Transpose@ {g /@ a, Last /@ pf}]; Array[f, 120] (* Michael De Vlieger, Mar 03 2015 *)
    Array[Times @@ (FactorInteger[#] /. {p_, e_} /; e > 0 :> (p^Mod[PrimePi@ p, 2])^e) &, 76] (* Michael De Vlieger, Apr 05 2017 *)
  • PARI
    a(n) = {f = factor(n); for (i=1, #f~, f[i,2] *= (primepi(f[i,1]) % 2);); factorback(f);} \\ Michel Marcus, Mar 03 2015
    
  • Python
    from math import prod
    from sympy import factorint, primepi
    def A247503(n): return prod(p**e for p, e in factorint(n).items() if primepi(p)&1) # Chai Wah Wu, Dec 26 2022
  • Sage
    n=100; oddIndexPrimes=[primes_first_n(2*n+1)[2*i] for i in [0..n]]
    [prod([(x[0]^(x[0] in oddIndexPrimes))^x[1] for x in factor(n)]) for n in [1..n]]
    

Formula

When n = Product_{k>=1} prime(k)^r_k, a(n) = Product_{k>=1} prime(k)^(r_k*(k mod 2)).
a(n) = n/A248101(n).
a(n) = Product_{k = 1..A001222(n)} A027746(n,k) and A049084(A027746(n,k)) is odd). - Reinhard Zumkeller, Mar 06 2015

A366245 The largest infinitary divisor of n that is a term of A366243.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 4, 1, 1, 1, 1, 1, 9, 1, 4, 1, 1, 1, 4, 25, 1, 9, 4, 1, 1, 1, 1, 1, 1, 1, 36, 1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 1, 49, 25, 1, 4, 1, 9, 1, 4, 1, 1, 1, 4, 1, 1, 9, 4, 1, 1, 1, 4, 1, 1, 1, 36, 1, 1, 25, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1
Offset: 1

Views

Author

Amiram Eldar, Oct 05 2023

Keywords

Comments

First differs from A335324 at n = 256.

Crossrefs

See the formula section for the relationships with A008833, A046100, A059895, A059896, A059897, A225546, A248101, A352780.

Programs

  • Mathematica
    f[p_, e_] := p^BitAnd[e, Sum[2^k, {k, 1, Floor@ Log2[e], 2}]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(e) = -sum(k = 1, e, (-2)^k*floor(e/2^k));
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^s(f[i,2]));}

Formula

Multiplicative with a(p^e) = p^A063695(e).
a(n) = n / A366244(n).
a(n) >= 1, with equality if and only if n is a term of A366242.
a(n) <= n, with equality if and only if n is a term of A366243.
From Peter Munn, Jan 09 2025: (Start)
a(n) = max({k in A366243 : A059895(k, n) = k}).
a(n) = Product_{k >= 0} A352780(n, 2k+1).
Also defined by:
- for n in A046100, a(n) = A008833(n);
- a(n^4) = (a(n))^4;
- a(A059896(n,k)) = A059896(a(n), a(k)).
Other identities:
a(n) = sqrt(A366244(n^2)).
a(A059897(n,k)) = A059897(a(n), a(k)).
a(A225546(n)) = A225546(A248101(n)).
(End)

A360646 Square array A(n, k), n, k > 0, read by antidiagonals upwards; A(n, k) = A066208(n) * A066207(k).

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 5, 12, 14, 9, 8, 15, 28, 18, 13, 10, 24, 35, 36, 26, 19, 11, 30, 56, 45, 52, 38, 21, 16, 33, 70, 72, 65, 76, 42, 27, 17, 48, 77, 90, 104, 95, 84, 54, 29, 20, 51, 112, 99, 130, 152, 105, 108, 58, 37, 22, 60, 119, 144, 143, 190, 168, 135, 116, 74, 39
Offset: 1

Views

Author

Rémy Sigrist, Feb 15 2023

Keywords

Comments

Every positive integer occurs exactly once.

Examples

			Array A(n, k) begins:
  n\k |  1   2    3    4    5    6    7    8    9   10
  ----+-----------------------------------------------
    1 |  1   3    7    9   13   19   21   27   29   37
    2 |  2   6   14   18   26   38   42   54   58   74
    3 |  4  12   28   36   52   76   84  108  116  148
    4 |  5  15   35   45   65   95  105  135  145  185
    5 |  8  24   56   72  104  152  168  216  232  296
    6 | 10  30   70   90  130  190  210  270  290  370
    7 | 11  33   77   99  143  209  231  297  319  407
    8 | 16  48  112  144  208  304  336  432  464  592
    9 | 17  51  119  153  221  323  357  459  493  629
   10 | 20  60  140  180  260  380  420  540  580  740
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

A(n, 1) = A066208(n) = A247503(A(n,k)).
A(1, k) = A066207(k) = A248101(A(n,k)).

A374611 If n = A066207(i) * A066208(j) for some i, j > 0 then a(n) = A066207(j) * A066208(i).

Original entry on oeis.org

1, 3, 2, 7, 9, 6, 4, 13, 5, 19, 21, 14, 8, 12, 18, 27, 29, 15, 10, 37, 11, 39, 43, 26, 49, 24, 16, 28, 17, 38, 53, 57, 42, 61, 36, 35, 20, 30, 22, 63, 71, 33, 23, 79, 45, 81, 87, 54, 25, 89, 58, 56, 31, 48, 91, 52, 32, 51, 101, 74, 34, 107, 40, 111, 72, 78
Offset: 1

Views

Author

Rémy Sigrist, Jul 14 2024

Keywords

Comments

This sequence is a self-inverse permutation of the positive integers with infinitely many fixed points.

Examples

			For n = 42: 42 = 21 * 2 = A066207(7) * A066208(2), so a(42) = A066207(2) * A066208(7) = 3 * 11 = 33.
		

Crossrefs

See A374600 for a similar sequence.

Programs

  • PARI
    \\ See Links section.

Formula

a(A360646(n, k)) = A360646(k, n).
a(n) = n iff n = A066207(k) * A066208(k) for some k > 0.
Showing 1-7 of 7 results.