cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A277324 Odd bisection of A260443 (the even terms): a(n) = A260443((2*n)+1).

Original entry on oeis.org

2, 6, 18, 30, 90, 270, 450, 210, 630, 6750, 20250, 9450, 15750, 47250, 22050, 2310, 6930, 330750, 3543750, 1653750, 4961250, 53156250, 24806250, 727650, 1212750, 57881250, 173643750, 18191250, 8489250, 25467750, 2668050, 30030, 90090, 40020750, 1910081250, 891371250, 9550406250, 455814843750, 212713593750
Offset: 0

Views

Author

Antti Karttunen, Oct 10 2016

Keywords

Comments

From David A. Corneth, Oct 22 2016: (Start)
The exponents of the prime factorization of a(n) are first nondecreasing, then nonincreasing.
The exponent of 2 in the prime factorization of a(n) is 1. (End)

Examples

			A method to find terms of this sequence, explained by an example to find a(7). To find k = a(7), we find k such that A048675(k) = 2*7+1 = 15. 7 has the binary partitions: {[7, 0, 0], [5, 1, 0], [3, 2, 0], [1, 3, 0], [3, 0, 1], [1, 1, 1]}. To each of those, we prepend a 1. This gives the binary partitions of 15 starting with a 1. For example, for the first we get [1, 7, 0, 0]. We see that only [1, 5, 1, 0], [1, 3, 2, 0] and [1, 1, 1, 1] start nondecreasing, then nonincreasing, so we only check those. These numbers will be the exponents in a prime factorization. [1, 5, 1, 0] corresponds to prime(1)^1 * prime(2)^5 * prime(3)^1 * prime(4)^0 = 2430. We find that [1, 1, 1, 1] gives k = 210 for which A048675(k) = 15 so a(7) = 210. - _David A. Corneth_, Oct 22 2016
		

Crossrefs

Cf. A277200 (same sequence sorted into ascending order).

Programs

  • Mathematica
    a[n_] := a[n] = Which[n < 2, n + 1, EvenQ@ n, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &@ a[n/2], True, a[#] a[# + 1] &[(n - 1)/2]]; Table[a[2 n + 1], {n, 0, 38}] (* Michael De Vlieger, Apr 05 2017 *)
  • Python
    from sympy import factorint, prime, primepi
    from operator import mul
    def a003961(n):
        F=factorint(n)
        return 1 if n==1 else reduce(mul, [prime(primepi(i) + 1)**F[i] for i in F])
    def a260443(n): return n + 1 if n<2 else a003961(a260443(n//2)) if n%2==0 else a260443((n - 1)//2)*a260443((n + 1)//2)
    def a(n): return a260443(2*n + 1)
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 21 2017

Formula

a(n) = A260443((2*n)+1).
a(0) = 2; for n >= 1, a(n) = A260443(n) * A260443(n+1).
Other identities. For all n >= 0:
A007949(a(n)) = A005811(n). [See comments in A125184.]
A156552(a(n)) = A277189(n), a(n) = A005940(1+A277189(n)).
A048675(a(n)) = 2n + 1. - David A. Corneth, Oct 22 2016
A001222(a(n)) = A007306(1+n).
A056169(a(n)) = A284267(n).
A275812(a(n)) = A284268(n).
A248663(a(n)) = A283975(n).
A000188(a(n)) = A283484(n).
A247503(a(n)) = A284563(n).
A248101(a(n)) = A284564(n).
A046523(a(n)) = A284573(n).
a(n) = A277198(n) * A284008(n).
a(n) = A284576(n) * A284578(n) = A284577(n) * A000290(A284578(n)).

Extensions

More linking formulas added by Antti Karttunen, Apr 16 2017

A284563 a(n) = A247503(A277324(n)).

Original entry on oeis.org

2, 2, 2, 10, 10, 10, 50, 10, 10, 250, 250, 50, 250, 250, 50, 110, 110, 250, 6250, 1250, 1250, 31250, 6250, 550, 2750, 6250, 6250, 13750, 2750, 2750, 6050, 110, 110, 30250, 68750, 13750, 343750, 781250, 156250, 151250, 151250, 781250, 19531250, 1718750, 343750, 8593750, 756250, 6050, 30250, 756250, 1718750, 3781250, 3781250, 8593750, 18906250, 151250
Offset: 0

Views

Author

Antti Karttunen, Mar 29 2017

Keywords

Crossrefs

Odd bisection of A284553.

Programs

  • Mathematica
    a[n_] := a[n] = Which[n < 2, n + 1, EvenQ@ n, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &@ a[n/2], True, a[#] a[# + 1] &[(n - 1)/2]]; Table[Times @@ (FactorInteger[#] /. {p_, e_} /; e > 0 :> (p^Mod[PrimePi@ p, 2])^e) &@ a[2 n + 1], {n, 0, 55}] (* Michael De Vlieger, Apr 05 2017 *)
  • PARI
    A284563(n) = A284553(n+n+1); \\ Other code as in A284553.
    
  • Scheme
    (define (A284563 n) (A247503 (A277324 n)))
    (define (A284563 n) (A284553 (+ n n 1)))

Formula

a(n) = A247503(A277324(n)).
a(n) = A284553((2*n)+1).
Other identities. For all n >= 0:
A001222(a(n)) = A284565(n).

A284566 Odd bisection of A284556.

Original entry on oeis.org

0, 1, 2, 1, 2, 3, 2, 2, 3, 3, 4, 4, 3, 4, 4, 2, 3, 5, 5, 5, 6, 6, 6, 5, 4, 6, 7, 5, 5, 6, 4, 3, 4, 5, 7, 7, 7, 9, 9, 6, 7, 10, 10, 9, 9, 9, 8, 6, 5, 8, 10, 8, 9, 11, 9, 7, 7, 8, 9, 8, 6, 7, 6, 3, 4, 7, 8, 8, 10, 11, 11, 9, 9, 13, 15, 12, 12, 14, 11, 8, 9, 12, 15, 14, 14, 17, 16, 11, 11, 15, 15, 13, 12, 12, 10, 7, 6
Offset: 0

Views

Author

Antti Karttunen, Apr 05 2017

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Which[n < 2, n, EvenQ@ n, a[n/2], True, a[(n - 1)/2] + a[(n + 1)/2]]; Table[(a[#] - JacobiSymbol[#, 3])/2 &[2 n + 1], {n, 0, 96}] (* Michael De Vlieger, Apr 05 2017 *)
  • Scheme
    (define (A284566 n) (A284556 (+ n n 1)))
    (define (A284566 n) (A001222 (A284564 n)))

Formula

a(n) = A284556((2*n)+1).
a(n) = A001222(A284564(n)).
Other identities. For all n >= 1:
A007306(n) = a(n-1) + A284565(n-1).

A284554 Prime factorization representation of Stern polynomials B(n,x) with only the odd powers of x present: a(n) = A248101(A260443(n)).

Original entry on oeis.org

1, 1, 3, 3, 1, 9, 3, 3, 7, 9, 3, 27, 7, 9, 21, 21, 1, 63, 21, 27, 49, 81, 21, 189, 7, 63, 147, 189, 7, 441, 21, 21, 13, 63, 21, 1323, 49, 567, 1029, 1323, 7, 3969, 1029, 1701, 343, 3969, 147, 1323, 13, 441, 1029, 9261, 49, 27783, 1029, 1323, 91, 3087, 147, 9261, 91, 441, 273, 273, 1, 819, 273, 1323, 637, 27783, 1029, 64827, 91, 27783, 50421, 583443, 343
Offset: 0

Views

Author

Antti Karttunen, Mar 29 2017

Keywords

Comments

a(n) = Prime factorization representation of Stern polynomials B(n,x) where the coefficients of even powers of x (including the constant term) are replaced by zeros. In other words, only the terms with odd powers of x are present. See the examples.

Examples

			n A260443(n)                      Stern            With even powers
             prime factorization  polynomial       of x cleared  -> a(n)
------------------------------------------------------------------------
0       1    (empty)              B_0(x) = 0                    0  |  1
1       2    p_1                  B_1(x) = 1                    0  |  1
2       3    p_2                  B_2(x) = x                    x  |  3
3       6    p_2 * p_1            B_3(x) = x + 1                x  |  3
4       5    p_3                  B_4(x) = x^2                  0  |  1
5      18    p_2^2 * p_1          B_5(x) = 2x + 1              2x  |  9
6      15    p_3 * p_2            B_6(x) = x^2 + x              x  |  3
7      30    p_3 * p_2 * p_1      B_7(x) = x^2 + x + 1          x  |  3
8       7    p_4                  B_8(x) = x^3                x^3  |  7
9      90    p_3 * p_2^2 * p_1    B_9(x) = x^2 + 2x + 1        2x  |  9
10     75    p_3^2 * p_2          B_10(x) = 2x^2 + x            x  |  3
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Which[n < 2, n + 1, EvenQ@ n, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &@ a[n/2], True, a[#] a[# + 1] &[(n - 1)/2]]; Table[Times @@ (FactorInteger[#] /. {p_, e_} /; e > 0 :> (p^Mod[PrimePi@ p + 1, 2])^e) &@ a@ n, {n, 0, 76}] (* Michael De Vlieger, Apr 05 2017 *)
  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From Michel Marcus
    A260443(n) = if(n<2, n+1, if(n%2, A260443(n\2)*A260443(n\2+1), A003961(A260443(n\2)))); \\ Cf. Charles R Greathouse IV's code for "ps" in A186891 and A277013.
    A248101(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 2] *= (primepi(f[i, 1])+1) % 2; ); factorback(f); } \\ After Michel Marcus
    A284554(n) = A248101(A260443(n));
    
  • Scheme
    (define (A284554 n) (A248101 (A260443 n)))

Formula

a(0) = a(1) = 1, a(2n) = A003961(A284553(n)), a(2n+1) = a(n)*a(n+1).
Other identities. For all n >= 0:
a(n) = A248101(A260443(n)).
a(n) = A260443(n) / A284553(n).
a(n) = A064989(A284553(2n)).
A001222(a(n)) = A284556(n).
Showing 1-4 of 4 results.