cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A258142 Consider the unitary aliquot parts, in ascending order, of a composite number. Take their sum and repeat the process deleting the minimum number and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to themselves.

Original entry on oeis.org

6, 21, 60, 85, 90, 261, 976, 2009, 87360, 97273, 4948133, 68353213
Offset: 1

Views

Author

Paolo P. Lava, May 22 2015

Keywords

Comments

A002827 is a subset of this sequence.
No more terms below 10^8. - Amiram Eldar, Jan 12 2019

Examples

			Divisors of 85 are 1, 5, 17, 85. Unitary aliquot parts are 1, 5, 17.
We have:
1 + 5 + 17 = 23;
5 + 17 + 23 = 45;
17 + 23 + 45 = 85.
Divisors of 2009 are 1, 7, 41, 49, 287, 2009.
Unitary aliquot parts are 1, 41, 49. We have:
1 + 41 + 49 = 91;
41 + 49 + 91 = 181;
49 + 91 + 181 = 321;
91 + 181 + 321 = 593;
181 + 321 + 593 = 1095;
321 + 593 + 1095 = 2009.
		

Crossrefs

Programs

  • Maple
    with(numtheory):P:=proc(q,h) local a,b,k,n,t,v; v:=array(1..h);
    for n from 1 to q do if not isprime(n) then b:=sort([op(divisors(n))]); a:=[];
    for k from 1 to nops(b)-1 do if gcd(b[k],n/b[k])=1 then a:=[op(a),b[k]]; fi; od;
    a:=sort(a); b:=nops(a); if b>1 then for k from 1 to b do v[k]:=a[k]; od;
    t:=b+1; v[t]:=add(v[k], k=1..b); while v[t]
    				
  • Mathematica
    aQ[n_] := Module[{s = Most[Select[Divisors[n], GCD[#, n/#] == 1 &]]}, If[Length[s] == 1, False, While[Total[s] < n, AppendTo[s, Total[s]]; s = Rest[s]]; Total[s] == n]]; Select[Range[2, 10^8], aQ] (* Amiram Eldar, Jan 12 2019 *)

Extensions

a(11)-a(12) from Amiram Eldar, Jan 12 2019

A289868 Consider the digit reverse of a number x. Take the sum of these digits and repeat the process deleting the first addend and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to x.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 17, 21, 25, 42, 63, 84, 143, 286, 2355, 5821, 6618, 11709, 12482, 33747, 39571, 129109, 466957, 1162248, 1565166, 1968084, 3636638, 3853951, 4898376, 13443745, 13933175, 17118698, 22421197, 24153462, 147440984, 209989875, 245742153
Offset: 0

Views

Author

Paolo P. Lava, Jul 14 2017

Keywords

Comments

Numbers of iterations for the listed terms are 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 4, 5, 5, 5, 6, 6, 9, 10, 10, 11, 11, 12, 12, 14, 15, 17, 17, 17, 18, 18, 18, 20, 20, 20, 21, 21, 23, 23, 24.
From David A. Corneth, Jul 20 2017: (Start)
If n is in the sequence and its highest digit is m then n * (10\m) is in the sequence for m * (10\m) < 10.
Let T(q, k, n) = b(n) from the following recursion: for 0 <= i <= q-1, b(i) = 1 if i = k, else, b(i) = 0. Then b(n) = Sum(j=1..n, b(n-j)). If some m has q digits d1,..,dk,..,dq with d1 nonzero then after n iterations, we have Sum(j=1..q, T(q, k, n)*d(q-k+1)). This enables an iterative approach to finding solutions with q digits. (End)

Examples

			Digit reverse of 17 is 71 and 7 + 1 = 8, 1 + 8 = 9, 8 + 9 = 17;
Digit reverse of 286 is 682 and 6 + 8 + 2 = 16, 8 + 2 + 16 = 26, 2 + 16 + 26 = 44, 16 + 26 + 44 = 86, 26 + 44 + 86 = 156, 44 + 86 + 156 = 286.
		

Crossrefs

Programs

  • Maple
    P:=proc(q) local a,b,k,n; for n from 0 to q do a:=convert(n,base,10); b:=convert(a,`+`); while b
    				
  • Mathematica
    Select[Range[10^6], Function[n, Total@ NestWhile[Append[Drop[#, 1], Total@ #] &, Reverse@ IntegerDigits@ n, Total@ # < n &] == n]] (* Michael De Vlieger, Jul 20 2017 *)
  • PARI
    is(n) = {my(d = Vecrev(digits(n))); while(vecsum(d)David A. Corneth, Jul 20 2017

A307859 Consider the non-unitary aliquot parts, in ascending order, of a composite number. Take their sum and repeat the process deleting the minimum number and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to themselves.

Original entry on oeis.org

24, 112, 189, 578, 1984, 2125, 3993, 5043, 9583, 19197, 32512, 126445, 149565, 175689, 225578, 236883, 1589949, 1862935, 1928125, 3171174, 5860526, 6149405, 11442047, 16731741, 60634549, 75062535, 134201344, 177816209, 1162143369, 4474779517, 10369035821
Offset: 1

Views

Author

Paolo P. Lava, May 02 2019

Keywords

Examples

			Divisors of 578 are 1, 2, 17, 34, 289, 578. Non-unitary aliquot parts are 17 and 34.
We have:
   17 +  34 =  51;
   34 +  51 =  85;
   51 +  85 = 136;
   85 + 136 = 221;
  136 + 221 = 357;
  221 + 357 = 578.
		

Crossrefs

Programs

  • Maple
    with(numtheory):P:=proc(q,h) local a,b,c,k,n,t,v; v:=array(1..h);
    for n from 1 to q do if not isprime(n) then b:=sort([op(divisors(n))]);
    a:=[]; for k from 2 to nops(b)-1 do if gcd(b[k],n/b[k])>1 then
    a:=[op(a),b[k]]; fi; od; b:=nops(a); if b>1 then c:=0;
    for k from 1 to b do v[k]:=a[k]; c:=c+a[k]: od;
    t:=b+1; v[t]:=c; while v[t]
    				
  • Mathematica
    aQ[n_] := CompositeQ[n] && Module[{s = Select[Divisors[n], GCD[#, n/#] != 1 &]}, If[Length[s] < 2, False, While[Total[s] < n, AppendTo[s, Total[s]]; s = Rest[s]]; Total[s] == n]]; Select[Range[10^4], aQ] (* Amiram Eldar, May 07 2019 *)

Extensions

a(20)-a(31) from Amiram Eldar, May 07 2019
Showing 1-3 of 3 results.