A248202 Sphenic numbers (A007304) whose neighbors are sphenic.
1310, 1886, 2014, 2666, 3730, 5134, 6062, 6214, 6306, 6478, 6854, 6986, 7258, 7954, 8394, 8534, 8786, 9214, 9454, 9822, 9878, 10282, 10946, 11606, 12454, 12566, 12802, 12858, 12994, 13054, 14134, 14314, 14330, 14466, 14818, 15086, 15266, 15806, 16114, 16134
Offset: 1
Keywords
Examples
1309, 1310 and 1311 factor as 7*11*17, 2*5*131 and 3*19*23, respectively. No smaller such trio exists, so a(1)=1310.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Wikipedia, Sphenic number
Programs
-
Mathematica
a248202[n_Integer] := Select[Range[n], And[And[PrimeNu[#] == 3, PrimeNu[# - 1] == 3, PrimeNu[# + 1] == 3], And[PrimeOmega[#] == 3, PrimeOmega[# - 1] == 3, PrimeOmega[# + 1] == 3]] &]; a248202[20166](* Michael De Vlieger, Nov 06 2014 *) f[n_]:=Last/@FactorInteger[n]=={1, 1, 1}; lst={}; Do[If[f[n]&&f[n+1]&&f[n+2], AppendTo[lst, n + 1]], {n, 17000}]; lst (* Vincenzo Librandi, Jul 24 2015 *) Mean/@SequencePosition[Table[If[PrimeNu[n]==PrimeOmega[n]==3,1,0],{n,20000}],{1,1,1}] (* Harvey P. Dale, Dec 08 2024 *)
-
PARI
sq(n)=bigomega(n)==3 && omega(n)==3; for(n=3,10^5,if(sq(n-1)&&sq(n)&&sq(n+1),print1(n,", "))); \\ Joerg Arndt, Oct 18 2014
Formula
a(n) = A066509(n)+1.
Comments