A248203 Numbers n such that n-1, n, and n+1 are the product of 4 distinct primes.
203434, 214490, 225070, 258014, 294594, 313054, 315722, 352886, 389390, 409354, 418846, 421630, 452354, 464386, 478906, 485134, 500906, 508046, 508990, 526030, 528410, 538746, 542270, 542794, 548302, 556870, 559690, 569066, 571234, 579886, 582406, 588730
Offset: 1
Keywords
Examples
203433 factors as 3*19*43*83, 203434 factors as 2*7*11*1321 and 203435 factors as 5*23*29*61; and with no similar smaller trio a(1)=203434. [Corrected by _James G. Merickel_, Jul 23 2015]
Links
- Anders Hellström, Table of n, a(n) for n = 1..300
Programs
-
Mathematica
f1[n_]:=Last/@FactorInteger[n]=={1, 1, 1, 1}; f2[n_]:=Max[Last/@FactorInteger[n]]; lst={}; Do[If[f1[n]&&f1[n + 1]&&f1[n+2], AppendTo[lst, n + 1]], {n, 2 8!, 4 9!}]; lst (* Vincenzo Librandi, Aug 02 2015 *)
-
PARI
{ \\ Initialized at A093550(4) (3rd term there, w/offset=2). If this \\ \\ program is to run from a different starting value of n, it must not \\ \\ be congruent to -1, 0 or 1 modulo 9 (in addition to being congruent \\ \\ to 2 modulo 4), and either u or the vector s needs to be brought into \\ \\ agreement. \\ n=203434;s=[4,4,8,8,8,4];u=1; while(1, if(issquarefree(n) && issquarefree(n-1) && issquarefree(n+1) && omega(n)==4 && omega(n-1)==4 && omega(n+1)==4, print1(n, ", ")); n+=s[u];if(u==6,u=1,u++)) } \\ James G. Merickel, Jul 23 2015
-
PARI
is_ok(n)=(n>1&&omega(n-1)==4&&omega(n)==4&&omega(n+1)==4&&issquarefree(n-1)&&issquarefree(n)&&issquarefree(n+1)); first(m)=my(v=vector(m),i,t=2);for(i=1,m,while(!is_ok(t),t++);v[i]=t;t++);v; /* Anders Hellström, Aug 01 2015 */
Formula
a(n) = A176167(n)+1.
Comments