cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248211 First differences of omega(n), the number of distinct prime factors function (A001221).

Original entry on oeis.org

1, 0, 0, 0, 1, -1, 0, 0, 1, -1, 1, -1, 1, 0, -1, 0, 1, -1, 1, 0, 0, -1, 1, -1, 1, -1, 1, -1, 2, -2, 0, 1, 0, 0, 0, -1, 1, 0, 0, -1, 2, -2, 1, 0, 0, -1, 1, -1, 1, 0, 0, -1, 1, 0, 0, 0, 0, -1, 2, -2, 1, 0, -1, 1, 1, -2, 1, 0, 1, -2, 1, -1, 1, 0, 0, 0, 1, -2, 1
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 04 2014

Keywords

Comments

First instance of abs(a(n)) > 2 is for n = 210. - Alonso del Arte, Oct 05 2014

Crossrefs

Cf. A001221 (omega).
Cf. A053222: first differences of sigma(n) = A000203.
Cf. A076191: first differences of bigomega(n) = A001222.
Cf. A127440: first differences of mobius(n) = A008683.

Programs

  • Maple
    with(numtheory): A248211:=n->nops(factorset(n+1))-nops(factorset(n)): seq(A248211(n), n=1..100);
  • Mathematica
    Table[PrimeNu[n + 1] - PrimeNu[n], {n, 100}] (* Hurt *)
    Differences[PrimeNu[Range[100]]] (* Alonso del Arte, Oct 04 2014 *)
  • PARI
    a(n) = omega(n+1) - omega(n); \\ Michel Marcus, Dec 29 2022

Formula

a(n) = omega(n+1) - omega(n) = A001221(n+1) - A001221(n).
G.f.: (1 - x)*Sum_{k>=1} x^(prime(k)-1)/(1 - x^prime(k)). - Ilya Gutkovskiy, Mar 15 2017